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Abstract We define a modification of the Erdős-Rényi random graph process which can
be regarded as the mean field frozen percolation process. We describe the behavior of the
process using differential equations and investigate their solutions in order to show the self-
organized critical and extremum properties of the critical frozen percolation model. We
prove two limit theorems about the distribution of the size of the component of a typical
frozen vertex.
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1 Statements

The frozen percolation process on a binary tree was defined by D.J. Aldous in [2]: it is
a modification of the percolation process which makes the following informal description
mathematically rigorous: we only occupy an edge if both end-vertices are in a finite cluster.
The self-organized critical property of this model manifests in the fact that for t ≥ 1

2 , which
is the critical time of the corresponding percolation process, a typical finite cluster has the
distribution of a critical percolation cluster.

I. Benjamini and O. Schramm showed that it is impossible to define a similar modification
of the percolation process on Z

2. An explanation of this non-existence result can be found
in Sect. 3 of [7].

First we give an informal description of the mean field frozen percolation process: It is a
modification of the Erdős-Rényi random graph process: Initially we have a (not necessarily
empty) graph on �N ·m0(0)� vertices (one should think about N as being large, but the initial
mass m0(0) is fixed), and between every possible pair of vertices, edges appear with rate 1

N
.

Simultaneously lightnings strike vertices with rate λ(t)μ(N) at time t and when a vertex is
struck, the fire spreads along the edges and burns the connected component of that vertex:
that subgraph is removed from the graph, including vertices. Thus the number of vertices

B. Ráth (�)
Institute of Mathematics, Budapest University of Technology (BME), Budapest, Hungary
e-mail: rathb@math.bme.hu

mailto:rathb@math.bme.hu


460 B. Ráth

of the random graph decreases with time. The expressions “burnt”, “frozen”, “deleted” and
“removed” are treated as synonyms in the sequel.

If V N
k (t) denotes the number of vertices contained in components of size k in the random

graph at time t , then the vector-valued stochastic process V(t) = (V N
1 (t), V N

2 (t), . . . ) also
has the Markov property (the main advantage of the mean field model is that the graph
structure of the connected components has no effect on the evolution of component sizes).
We are interested in the model when 1 � N .

Denote by N = {1,2, . . . } and N0 = {0,1,2, . . . }.

Definition 1 We fix m0(0) ∈ R+. The mean field frozen percolation process on N vertices
is a continuous time Markov process with state space

�N =
{

V ∈ N
N

0 :
∑
k≥1

Vk ≤ �N · m0(0)�, ∀k
Vk

k
∈ N0

}
.

We define the coagulation and deletion operators

V +
k,l :=

{
(V1, V2, . . . , Vk − k, . . . , Vl − l, . . . , Vk+l + k + l, . . . ) if k < l,

(V1, V2, . . . , Vk − 2k, . . . , V2k + 2k, . . . ) if k = l,
(1)

V −
k := (V1, . . . , Vk − k, . . . ). (2)

Let λ : R+ → R+ be a positive continuous function and μ : N → R+. The transition rates of
the Markov process are

λ(V → V +
k,l) =

{
1
N

· Vk · Vl if k < l,

1
N

· Vk ·(Vk−k)

2 if k = l,
(3)

λ(V → V −
k ) = λ(t) · μ(N) · Vk. (4)

Let vN
k (t) := Vk(t)

N
denote the mass of components of size k at time t .

The mean field frozen percolation model is closely related to the mean field forest fire
model (discussed in [6]), the only difference in the definition of the Markov process is that
in the case of the forest fire model, a burnt component of size k is replaced by k isolated
vertices, so that the number of vertices in the random graph remains unchanged. The two
models both have the self-organized critical property (and we believe that they are in the
same universality class, which means that the theorems of this paper have analogous “forest
fire” versions), but the corresponding partial differential equations have an explicit solution
in the case of the frozen percolation model which enables us to say more about this model.

V :=
{

v = (
vk

)∞
k=1

: vk ∈ R, vk ≥ 0 and
∞∑

k=1

vk < ∞
}

,

V∗ := {v : v ∈ V, ∃K < +∞ ∀k ≥ K vk = 0}.

Definition 2 We consider a sequence of mean field frozen percolation processes with N →
∞, but with the initial state

v(0) = (
vN

1 (0), vN
2 (0), . . . , vN

K (0),0,0, . . .
)=

(
V N

1 (0)

N
,

V N
2 (0)

N
, . . . ,

V N
K (0)

N
,0,0, . . .

)
∈ V∗
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and the lightning rate function λ(t) fixed (independently of N ). Such a sequence is called

– subcritical if μ(N) ≡ 1
– critical if 1

N
� μ(N) � 1

– alternating if μ(N) = 1
N

.

If vk(0) = I{k=1} · m0(0) then the initial state is called monodisperse, otherwise it is polydis-
perse.

We are going to describe the time evolution of the limit object

lim
N→∞

vN
k (t) = vk(t). (5)

We introduce differential equations to characterize the limiting component size distributions
vk(t) where k ∈ N and t ∈ R+. They are modifications of the Smoluchowski coagulation
equation with multiplicative rate kernel:

ċk(t) = 1

2

k−1∑
l=1

l · (k − l) · cl(t) · ck−l (t) − ck(t)

∞∑
l=1

l · cl(0) Flory’s model, (6)

ċk(t) = 1

2

k−1∑
l=1

l · (k − l) · cl(t) · ck−l (t) − ck(t)

∞∑
l=1

l · cl(t) Stockmayer’s model. (7)

If we let vk(t) = k · ck(t) then (6) becomes

v̇k(t) = k

2

k−1∑
l=1

vl(t)vk−l (t) − k · vk(t) ·
∞∑

k=1

vk(0). (8)

We are going to use the formulation (8) rather than the classical (6).
The differential equations (8) describe the time evolution of (vk(t))

∞
k=1 defined by (5) for

the dynamical Erdős-Rényi random graph process (see [1]). If we only look at the evolution
of the component size vector V(t) in the dynamical Erdős-Rényi random graph model, we
get the Marcus-Lushnikov process (see [5]) with multiplicative kernel which is the μ(N) ≡
0 case of our model (no deletions, only coagulations).

Definition 3 If (vk)
∞
k=1 = v ∈ V let

m0 :=
∑
k≥1

vk, m1 :=
∑
k≥1

kvk, m2 :=
∑
k≥1

k2vk, m3 :=
∑
k≥1

k3vk.

Remark 1 Our definition of the moments mn differs from the convention of the literature of
the Smoluchowski equation by a shift of indices.

If we define

wN
k (t) :=

k∑
l=1

vN
l (t) and �N(t) :=

∑
l≥1

vN
l (0) −

∑
l≥1

vN
l (t) = mN

0 (0) − mN
0 (t) (9)

then for all k the random function wN
k (t) is decreasing and �N(t) (the mass of burnt vertices)

is increasing.
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It might happen (e.g. in the case of the Erdős-Rényi model) that

θ(t) := lim
k→∞

lim
N→∞

(
mN

0 (t) − wN
k (t)

) �= lim
N→∞

lim
k→∞

(
mN

0 (t) − wN
k (t)

)= 0.

In this case the mass missing from the small components is contained in a giant component
of mass 0 < θ(t).

Definition 4 If v(t) is a solution of (8), we define the gelation time by

T g := inf{t : m1(t) = +∞}.

It is well-known from the theory of the Smoluchowski coagulation equation that an alterna-
tive characterisation of the gelation time is

T g = inf{t : m0(t) < m0(0)}.
For the solution of (8) the gelation time is T g = 1

m1(0)
, the mass of the giant component

is θ(t) = m0(0) − m0(t). v(t) undergoes a phase transition:

– For 0 ≤ t < T g the system is subcritical: θ(t) = 0 and k �→ vk(t) decay exponentially
with k.

– For T g < t the system is supercritical: θ(t) > 0 and k �→ vk(t) decay exponentially with
k. Further on: t �→ θ(t) is smooth and strictly increasing with limt→∞ θ(t) = m0(0).

– Finally, at t = T g the system is critical: θ(t) = 0 and

∞∑
k=K

vk(T
g) � K−1/2 as K → ∞. (10)

Our aim is to understand in similar terms the asymptotic behavior of the system when,
beside the Erdős-Rényi coagulation mechanism, deletions due to lightnings also take place.

Definition 5 We say that v(t) = (vk(t))
∞
k=1 ∈ V solves the general frozen percolation equa-

tion on [0, T ] with initial condition v(0) ∈ V∗, a continuous nonnegative rate function
λ : R+ → R+ and control function � : R+ → R+ if

∀0 ≤ s ≤ t ≤ T 0 ≤ �(0) ≤ �(s) ≤ �(t) < m0(0) (11)

and for all k = 1,2, . . . the equations

vk(t) = vk(0) +
∫ t

0

k

2

k−1∑
l=1

vl(s)vk−l (s) − kvk(s) ((m0(0) − �(s)) + λ(s)) ds (12)

and the inequality

∀t 0 ≤ θ(t) := m0(0) − m0(t) − �(t) (13)

is satisfied.

It is easy to see by induction that the absolutely continuous functions v1(t), v2(t), . . . are
completely determined by (12), the initial condition v(0) and the functions λ and �. The
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only reason why we do not write

v̇k(t) = k

2

k−1∑
l=1

vl(t)vk−l (t) − kvk(t) ((m0(0) − �(t)) + λ(t)) (14)

instead of (12) is that the increasing function �(t) might have jumps.
There are three versions of the general frozen percolation equation corresponding to the

three regimes on Definition 2:

– The subcritical system of integral equations are (12) with the extra conditions ∀t 0 <

λinf ≤ λ(t) and

�(t) ≡ m0(0) − m0(t). (15)

That is θ(t) ≡ 0 by (13) (no giant components appear due to frequent lightnings) and the
equations take on the form

vk(t) = vk(0) +
∫ t

0

k

2

k−1∑
l=1

vl(s)vk−l (s) − k · vk(s)m0(s) − λ(s)k · vk(s)ds. (16)

The term −λ(s)k · vk(s) indicates that in the subcritical regime even small components
are burnt with a rate proportional to their sizes and λ(s).

– The critical equations are (12) with the extra conditions λ(t) ≡ 0 and (15):

vk(t) = vk(0) +
∫ t

0

k

2

k−1∑
l=1

vl(s)vk−l (s) − k · vk(s)m0(s)ds. (17)

λ(t) ≡ 0 indicates that in the critical regime lightnings are not frequent enough to do any
harm to small components, but (15) indicates that they are frequent enough to keep the
mass of the giant component at zero.

– Let 0 = T b
0 < T b

1 < T b
2 < · · · be a sequence with no accumulation points. Let

M(t) := max{i : T b
i < t} (18)

v(t) solves the alternating equations with burning times T b
1 , T b

2 , . . . if

v̇k(t) = k

2

k−1∑
l=1

vl(t)vk−l (t) − k · vk(t)m0(T
b
M(t)). (19)

Mind the difference between (8) and (17): in the case of the Erdős-Rényi model the small
components are allowed to coagulate with the giant component (which is of size θ(t) =
m0(0) − m0(t) by �(t) ≡ 0 and (13)), but in the case of the frozen percolation model the
giant components are removed at the time of their birth. Using the terminology of the theory
of Smoluchowski coagulation equations we might say that in the case of (8) the gel and the
sol do react in the post-gel phase (Flory’s model, (6)), but in the case of (17) they do not
react (Stockmayer’s model, (7)). Nevertheless, for t ≤ T g the solutions of (8) and (17) are
identical since m0(t) = m0(0) in this regime.

The intuitive meaning of (19) is that giant components are removed from the system at
the burning times.
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Thus (19) is (12) with

θ(t) = m0(T
b
M(t)) − m0(t), (20)

�(t) = m0(0) − m0(T
b
M(t)) = m0(0) − m0(t) − θ(t) =

M(t)∑
j=1

θ(T b
j ). (21)

Both θ(t) and �(t) are left-continuous functions of t .
Note that in the case of the (sub)critical frozen percolation equations ((16) and (17)) the

fact that �(t) is an increasing function automatically follows by (15):

�(t) − �(s) = m0(s) − m0(t)

=
∞∑

k=1

∫ t

s

−k

2

k−1∑
l=1

vl(u)vk−l (u) + k · vk(u)m0(u) + λ(u) · k · vk(u) du

= lim
N→∞

∫ t

s

N∑
k=1

∞∑
l=N−k+1

k · vk(u)vl(u) + λ(u) · k · vk(u) du ≥ 0.

Theorem 1

– For any v(0) ∈ V∗ and 0 < λinf ≤ λ(t) (16) have a unique solution.
– For any v(0) ∈ V∗ (17) have a unique solution.
– For any v(0) ∈ V∗ and any sequence of burning times (19) have a unique solution.

We prove this theorem in Sect. 3.

Definition 6 The solution of the random alternating equations with rate function λ : R+ →
R+ is a V-valued continuous-time Markov process: v(t) evolves deterministically, driven by
(19), but the sequence of burning times T b

1 , T b
2 , . . . is random:

lim
dt→0

1

dt
P
(
t ≤ T b

M(t)+1 ≤ t + dt
∣∣Ft

)= λ(t)θ(t), (22)

where Ft is the natural filtration generated by the process.

In plain words: a lightning strikes and burns the giant component with rate proportional
to its size and λ(t).

Definition 7

W := {
(wk)

∞
k=1 : 0 ≤ w1 ≤ w2 ≤ · · · < +∞}

,

W ∗ := {
(wk)

∞
k=1 ∈ W : ∃K < +∞ ∀k ≥ K wk = wK

}
.

If w ∈ W denote by m0 := supk wk .
We say that ((wk(·))∞

k=1,�(·)) is a frozen percolation evolution on [0, T ] with initial
condition (wk(0))∞

k=1 = w ∈ W ∗, or briefly

((wk(·))∞
k=1,�(·)) ∈ Ww[0, T ]



Mean Field Frozen Percolation 465

if for all 0 ≤ t ≤ T we have (wk(t))
∞
k=1 ∈ W , for all k the functions wk : [0, T ] → [0,m0(0)]

are left-continuous and decreasing, � : [0, T ] → [0,m0(0)] is left continuous and increasing
with initial condition �(0) = 0, moreover for all t ≤ T we have (13).

We define convergence on the space Ww[0, T ]:
((wn

k (·))∞
k=1,�

n(·)) → ((wk(·))∞
k=1,�(·))

as n → ∞ if for all k we have wn
k (t) → wk(t) for all t which is a point of continuity of wk

and �n(t) → �(t) for all t which is a point of continuity of �.

With this topology the space Ww[0, T ] is metrizable, complete and compact.
From the frozen percolation process of Definition 1. one gets a random element of

Ww[0, T ] by (9). Denote the probability measure on Ww[0, T ] corresponding to the process
by PN .

It is easy to check that ((wk(·))∞
k=1,�(·)) ∈ Ww[0, T ] where wk(t) =∑k

l=1 vl(t) and v(t)

is a solution of the general frozen percolation equation (11) & (12) & (13).

Theorem 2 We consider a sequence of frozen percolation processes (see Definition 1) with
initial state vN(0) = v(0) ∈ V∗ and λ(t) positive and continuous. Define wN

k (t) and �N(t)

as in (9). Denote the probability measure on Ww[0, T ] corresponding to the process by PN .
Then PN converges with respect to the weak convergence of probability measures on the

polish space Ww[0, T ] to a limiting measure P, which depends on the decay rate of μ(N)

in the following way:

– If μ(N) ≡ 1 then P is concentrated on the unique solution of (16) with rate function λ(t).
– If 1

N
� μ(N) � 1 then P is concentrated on the unique solution of (17).

– If μ(N) = 1
N

then P is the law of the solution of the random alternating equation (see
Definition 6) with rate function λ(t).

We prove the μ(N) ≡ 1 and the 1
N

� μ(N) � 1 part of this theorem in Sect. 4. In fact,
these proofs are almost identical to the corresponding convergence results of [6], but we
present them here as well for the sake of completeness.

We omit the proof of the μ(N) = 1
N

part of Theorem 2, but we believe that the methods
introduced in Sect. 4. can be easily generalized for this case as well.

If we formally substitute λ(t) ≡ 0 into (16) or T b
M(t) ≡ t into (19), we get (17). Rigor-

ously:

Theorem 3 Let (vn(t))∞
n=1 be a sequence of solutions of (16) with the same initial condition

v(0) ∈ V∗ where λn(t) → 0 uniformly as n → ∞. Then for all t and k limn→∞ vn
k (t) = vk(t)

where v(t) is the solution of (17) with the same initial data. limn→∞ �n(t) = �(t) uniformly
on [0,∞).

In plain words: if the rate of lightning is very small in the subcritical equations, then the
solution is similar to that of the critical equation. We prove this theorem in Sect. 6.

Theorem 4 Let (vn(t))∞
n=1 be a sequence of solutions of (19) with the same initial condition

v(0) where the sequence of burning times satisfy

lim
n→∞ sup

i

{T b
i+1(n) − T b

i (n)} = 0.
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Then for all t and k limn→∞ vn
k (t) = vk(t) where v(t) is the solution of (17) with the same

initial data. limn→∞ �n(t) = �(t) uniformly on [0,∞).

In plain words: if the burning times of the alternating equations are very frequent, then
the solution is similar to that of the critical equation. We prove this theorem in Sect. 7.

The solution of (17) has the self-organized critical property: for all T g ≤ t it has the
power-law decay of (10):

Theorem 5 If v(t) is a solution of (17) with initial condition v(0) ∈ V∗, then T g = 1
m1(0)

,

�(t) = ∫ t

T g ϕcrit(s)ds where ϕcrit : [T g,+∞) → R+ is positive and continuous, and for all
t ≥ T g we have

lim
K→∞

K
1
2

∞∑
k=K

vk(t) =
√

2ϕcrit(t)

π
. (23)

Definition 8 Let x∗(t) := inf{x :∑∞
k=1 vk(t)e

−kx < +∞}.

The solutions of our equations have a remarkable rigidity property:

Theorem 6 If v(t) is the solution of (16) or (19) and ṽ(t) is the solution of (17) with the
same initial condition, then for all t ≥ T g and k ≥ 1 we have

ṽk(t) = vk(t)e
−kx∗(t).

The solution of (17) with monodisperse initial condition is well-known (see e.g. [8]) and
explicit:

Claim If v(t) is the solution of (17) with vk(0) = I{k=1} · m0(0) then for t ≥ T g = 1
m1(0)

=
1

m0(0)
we have

vk(t) = 1

t

kk−1

k! e−k. (24)

That is, for all T g ≤ t in the N → ∞ limit, the component size of a uniformly cho-
sen (unburnt) vertex in the critical frozen percolation model has Borel distribution, which
is the same as that of a vertex in the Erdős-Rényi graph at t = T g . The Borel distribu-
tion ((vk(1))∞

k=1 in (24)) is the distribution of the size of a critical Galton-Watson tree with
POI(1) offspring distribution (see [1]).

The same self-similarity phenomenon can be observed in Aldous’ frozen percolation
model (see [2]) on the binary tree: for t ≥ 1

2 , which is the critical time of the percolation
process on the binary tree, a typical finite cluster has the distribution of a critical percolation
cluster.

The solutions started from a polydisperse initial state are asymptotically self-similar:

Theorem 7 If v(t) is the solution of the critical equation (17) with v(0) ∈ V∗, and v1(0) > 0
then

lim
t→∞ t · vk(t) = kk−1

k! e−k and lim
t→∞ t · m0(t) = 1. (25)
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Theorems 5, 6 and 7 are proved in Sect. 5 using the method of Laplace transforms, which
is classical for the Smoluchowski equation with multiplicative kernel. The results (25) and
vk(t)

k
= ck(t) � k−5/2 (which is a variant of (23)) are already present in [8], but we believe

that our approach based on the notion of the critical core of v(t) (defined in Sect. 2) gives
new insight into these results about the solution of (17).

In the frozen percolation model on the binary tree, components are frozen (i.e. removed
from the system) when their size becomes infinite. The question may arise:

What is the typical size of a frozen component in the mean field process of Definition 1?
In order to precisely formulate this question recall (2) and let

�N([t1, t2], k) := k

n
· ∣∣{t ∈ [t1, t2] : V(t+) = V −

k (t−)
}∣∣ .

Thus �N([t1, t2], k) is the mass of burnt components of size k from t1 to t2. We have

∑
k≥1

�N([t1, t2], k) = �N(t2) − �N(t1) =: �([t1, t2]).

Thus pN
k [t1, t2] := �N ([t1,t2],k)

�N ([t1,t2]) , k = 1,2, . . . is a random probability distribution for all N and
t1 < t2.

Denote by |CN
max(t)| the size of the largest component at time t .

Conjecture 1 If μ(N) = N−α in a critical sequence of frozen percolation processes (see
Definitions 1 and 2), where 0 < α < 1, and if we define

β(α) :=
{

2α if α ≤ 1
3 ,

α+1
2 if α ≥ 1

3

(26)

then for every T g < t we have

lim
N→∞

log(E(mN
1 (t)))

log(N)
= α, (27)

lim
N→∞

log(E(mN
2 (t))) − log(E(mN

1 (t)))

log(N)
= β(α), (28)

lim
N→∞

log(E(|CN
max(t)|))

log(N)
= β(α). (29)

Moreover for every v(0), T g < t1 < t2 and α there exists a non-defective probability distri-
bution function F : (0,∞) → (0,1), limx→0+ F(x) = 0, limx→∞ F(x) = 1 such that for all
x ∈ R+ we have

lim
N→∞

∑
k≥1

I[k ≤ xNβ(α)] · pN
k [t1, t2] = F(x). (30)

In plain words we might say that after gelation the typical component size of a frozen
vertex and the size of the largest component is of order Nβ(α). This conjecture is supported
by heuristic arguments, computer simulations and Theorems 8 and 9 below. For 0 < α < 1

3
the model is conjectured to behave similarly to the subcritical case described in Theorem 8,
whereas for 1

3 < α < 1 it is conjectured to behave similarly to the alternating case described
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in Theorem 9. Note that β( 1
3 ) = 2

3 and N
2
3 is the order of the size of the largest component

in the critical Erdős-Rényi random graph.

Theorem 8 If vλ(t) is the solution of (16) with rate function λ(t) ≡ λ and vλ(0) = v(0) ∈
V∗ then there is a constant C that depends only on the initial data and T such that for all
0 < λ ≤ 1 and 1

m1(0)
< t ≤ T we have

|ϕλ(t) − ϕcrit(t)| ≤ Cλ, (31)

where

d

dt
�λ(t) = ϕλ(t) = λmλ

1(t). (32)

Moreover if we define the random variable Yλ(t) to have distribution

P (Yλ(t) = k) = λ · k · vλ
k (t)

ϕλ(t)
= k · vλ

k (t)

mλ
1(t)

then

lim
λ→0

P
(

λ2

2ϕcrit(t)
Yλ(t) < x

)
=
∫ x

0

1√
π

1√
y

e−ydy. (33)

In plain words: for any t > T g the distribution of the size-biased sample from the
component-size distribution vλ(t) rescaled by λ−2 converges in distribution to a 
( 1

2 ,1)

distribution as λ → 0. We prove this theorem in Sect. 7.
The relevance of Theorem 8 to Conjecture 1 is the following: if we consider a sequence

of subcritical frozen percolation models (see Definition 2) with λ(t) ≡ λ then by Theorem 2
we get

lim
dt→0

lim
N→∞

pN
k [t, t + dt] = lim

dt→0

�λ([t, t + dt], k)

�λ([t, t + dt])

= lim
dt→0

∫ t+dt

t
λ · k · vλ

k (s) ds∫ t+dt

t

∑∞
l=1 λ · l · vλ

l (s)
= k · vλ

k (t)

mλ
1(t)

= P (Yλ(t) = k) .

If we let λ → 0 then by (31) and (32) we get mλ
1(t) � λ−1 which is a “subcritical” version

of (27),
mλ

2 (t)

mλ
1 (t)

= E(Yλ(t)) � λ−2 corresponds to β(α) = 2α in (28), and (33) is a version of

(30).

Theorem 9 Let vλ(t) denote the solution of the random alternating equations (see Defini-
tion 6) with a constant rate function λ(t) ≡ λ.

Let δ(λ) be a function satisfying λ− 1
2 � δ(λ) � 1 as λ → ∞.

Recalling (18) and (20) let

�λ(t, x) :=
M(t)∑
j=1

θλ(T b
j )I[θλ(T b

j ) > x]
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be the random mass of frozen giants of size at least x. Then

lim
λ→∞

�λ(t + δ(λ),2
√

ϕcrit(t)

λ
x) − �λ(t,2

√
ϕcrit(t)

λ
x)

δ(λ)ϕcrit(t)
=
∫ ∞

x

4√
π

y2e−y2
dy (34)

in probability.

We prove this theorem in Sect. 7.
The heuristic meaning of this theorem is the following: if we pick a vertex uniformly

from all vertices that were frozen between t and t + δ(λ) and denote the mass of the giant

component of that vertex by Zλ(t), then the distribution of 1
2

√
λ

ϕcrit(t)
Zλ(t) converges to a

size-biased Rayleigh distribution (see Definition 15) as λ → ∞. Thus the typical mass of
a frozen giant is of order λ− 1

2 , which suggests that if μ(N) = Nε

N
(that is α = 1 − ε in

Conjecture 1) then the typical size of a frozen component is of order (Nε)− 1
2 · N = N1− 1

2 ε ,
that is β(α) = α+1

2 . Equation (34) is the “alternating” version of (30).
The critical frozen percolation model has an extremum property compared to the sub-

critical and alternating models (see Definition 2): if each burnt/frozen vertex produces profit
at a rate 1

N
$ per time unit after it has been frozen, but each lightning (even the ones hitting

burnt vertices) costs 1
N ·m0(0)

$, then asymptotically (as N → ∞) the critical model is the best
choice if we want to maximize our profit on [0, T ]. We reformulate this extremum principle
in terms of the differential equations (16), (17), (19).

The asymptotic value of our profit produced by burnt vertices as N → ∞ is
∫ T

0 �(t)dt

according to Theorem 2. The asymptotic cost of lightnings is
∫ T

0 λ(t)dt for the solution of
(16), but it is zero for (17) and (19), since the price we have to pay for the lightnings vanishes
in the case of critical and alternating models as N → ∞.

Theorem 10 We fix v(0) ∈ V∗. Let vcrit(t) denote the solution of (17) with initial condition
v(0) and let vsub denote the solution of (16) with lightning rate function λ(t) and the same
initial condition. Then for any T > 0

∫ T

0
�sub(t)dt −

∫ T

0
λ(t) dt ≤

∫ T

0
�crit(t)dt −

∫ T

0
0dt. (35)

If valt(t) denotes the solution of (19) with an arbitrary sequence of burning times and
initial condition v(0) then

∫ T

0
�alt(t)dt ≤

∫ T

0
�crit(t)dt. (36)

Remark 2 Let T > T g = 1
m1(0)

and ε > 0. For a suitable choice of λ(t) we have

∫ T

0
�sub(t)dt − (1 − ε)

∫ T

0
λ(t) dt >

∫ T

0
�crit(t)dt − (1 − ε)

∫ T

0
0dt. (37)

For a suitable choice of burning times

∫ T

0
�alt(t)dt + ε�alt(T ) >

∫ T

0
�crit(t)dt + ε�crit(T ). (38)
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The idea that the critical forest fire model solves a variational problem is already present
in [3].

2 Definitions, Transformations

We consider a solution of the general frozen percolation equation (see Definition 5).
Denote the Laplace transform (generating function) of v(t) by

V (t, x) :=
∞∑

k=1

vk(t)e
−kx (39)

for x > 0. Then V (t,0) = V (t,0+) = m0(t) and by dominated convergence for x > 0 (16)
is transformed into

V (t, x) = V (0, x) +
∫ t

0
V ′(s, x)(−V (s, x) + (m0(0) − �(s)) + λ(s))ds. (40)

In the sequel we denote the derivative of functions f (t, x) with respect to the time and space
variables by ḟ (t, x) and f ′(t, x), respectively.

Let

U(t, x) := V (t, x) − (m0(0) − �(t)). (41)

Thus (40) is transformed into

U(t, x) = U(0, x) +
∫ t

0
−U(s, x)U ′(s, x) + λ(s)U ′(s, x)ds + �(t). (42)

Since V (t, ·) is a Laplace transform we have

U(t,0) = −θ(t), U ′(t,0) = −m1(t), lim
x→∞U(x) = −m0(0) + �(t) (43)

and U is a monotone decreasing convex function of the variable x for every t .

Definition 9 Denote by X(t,u) the inverse function of U(t, x) with respect to x, that is
U(t,X(t, u)) = u.

The domain of X(t,u) in the variable u is (−m0(t) + �(t),−θ(t)].

X(t,−θ(t)) = 0. (44)

The notion of X(t, ·) and a version of the following lemma is already present in [8].

Lemma 1 If X(t,u) is defined using a solution of the general frozen percolation equation
then the following identity holds:

X(t,u) = X(0, u − �(t)) + t · (u − �(t)) −
∫ t

0
λ(s)ds +

∫ t

0
�(s)ds. (45)
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Proof We fix an xmin > 0. For any x ≥ xmin we have

|U(t, x)| ≤ m0(0), |U ′(t, x)| ≤ m0(t)

xmin
, |U ′′(t, x)| ≤ m0(t)

x2
min

, (46)

moreover sup0≤t≤T λ(t) < +∞. For an x(0) > xmin denote by x(t) the solution of the inte-
gral equation

x(t) = x(0) +
∫ t

0
U(s, x(s)) − λ(s)ds. (47)

This equation is well-posed on the domain x(t) ≥ xmin, since U(s, x)− λ(s) is bounded and
Lipschitz-continuous in x.

Moreover

x(t + dt) − x(t) = O(dt), |U(t, x(t)) − U(t, x(t + dt))| = O
(

dt

xmin

)
.

If we differentiate (42) w.r.t. x we get |U ′(t + dt, x) − U ′(t, x)| = O( dt

x2
min

).

U(t + dt, x(t + dt)) − U(t, x(t)) − (�(t + dt) − �(t))

= (
U(t + dt, x(t + dt)) − U(t, x(t + dt))

)
+ (

U(t, x(t + dt)) − U(t, x(t))
)− (�(t + dt) − �(t))

=
∫ t+dt

t

−U(s, x(t + dt))U ′(s, x(t + dt)) + λ(s)U ′(s, x(t + dt))ds

+ U ′(t, x(t + dt))

∫ t+dt

t

U(s, x(s)) − λ(s)ds + O
(

dt2

x2
min

)

=
∫ t+dt

t

U(s, x(t + dt))
(
U ′(t, x(t + dt)) − U ′(s, x(t + dt))

)
ds

+
∫ t+dt

t

U ′(t, x(t + dt))
(
U(s, x(s)) − U(s, x(t + dt))

)
ds

+
∫ t+dt

t

λ(s)
(
U ′(s, x(t + dt)) − U ′(t, x(t + dt))

)
ds + O

(
dt2

x2
min

)
= O

(
dt2

x2
min

)
.

Thus U(t, x(t)) = U(0, x(0)) + �(t), and if we substitute this back into (47), we get

x(t) = x(0) + tU(0, x(0)) +
∫ t

0
�(s)ds −

∫ t

0
λ(s)ds.

By the definition of X(t,u) we have X(t,U(t, x(t))) = x(t), and by substituting

u = U(0, x(0)) + �(t)

we obtain (45). �

Since v(0) ∈ V∗, V (0, x) is well-defined and analytic for all x ∈ R, thus X(0, u) can be
analytically extended to (−m0(0),+∞). Equation (45) makes it possible to extend X(t,u)
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to (−m0(0) + �(t),+∞) analytically. The extended X(t,u) is a strictly convex function of
the u variable. If we differentiate (45) w.r.t. u, we get

X′(t, u) = X′(0, u − �(t)) + t. (48)

Definition 10 Define F(t,w) by the identity

F(t,−X′(t, u)) = −u. (49)

Thus −F(t,w) is the inverse function of −X′(t, u). If X̂ denotes the Legendre-transform of
X w.r.t. the variable u, then

G(t,w) := X̂(t,−w) = −min
u

{wu + X(t,u)} = wF(t,w) − X(t,−F(t,w)). (50)

Let

E(t,w) = G′′(t,w) = F ′(t,w). (51)

We call E(t, ·) the critical core of v(t). If we use the extended definition of X then G(t,w)

is well-defined and analytic for all w > −t .

We have

F

(
t,− 1

U ′(t, x)

)
= −U(t, x) and E

(
t,− 1

U ′(t, x)

)
= (−U ′(t, x))3

U ′′(t, x)
. (52)

It follows from the properties of the Legendre-transformation and (45) that

G(t,w) = G(0,w + t) − w · �(t) −
∫ t

0
�(s)ds +

∫ t

0
λ(s)ds, (53)

F(t,w) = F(0,w + t) − �(t), (54)

E(t,w) = E(0,w + t). (55)

G(t, ·) is strictly convex and G determines X uniquely since the Legendre-transformation
is invertible. Define

w∗(t) := −X′(t,0) ⇐⇒ F(t,w∗(t)) = 0 ⇐⇒ argmin
w

G(t,w) = w∗(t), (56)

X(t,0) = 0 =⇒ G(t,w∗(t)) = 0 =⇒ ∀w G(t,w) ≥ 0, (57)

θ(t) = 0 =⇒ w∗(t) = 1

m1(t)
≥ 0, (58)

x∗(t) = inf

{
x :

∞∑
k=1

vk(t)e
−kx < +∞

}
= min

u
X(t, u) = X(t,−F(t,0)) = −G(t,0). (59)

3 The frozen percolation equations are well-posed

Lemma 2 The alternating equation (19) is well-posed.
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Proof If we are given the sequence of burning times 0 < T b
1 < T b

2 < · · · the solution of
(19) can be uniquely constructed by using induction on i: if we already have the solution
on [0, T b

i ], then we are given m0(T
b
i ), so we can uniquely solve the sequence of ordinary

differential equations (19) for v1, v2, . . . on [T b
i , T b

i+1] by repeatedly applying the Picard-
Lindelöf theorem, since the equation for vk only contains v1, . . . , vk on its right-hand side. �

Lemma 3 The solution of the integral equations (16) is unique for every initial condition
v(0) ∈ V∗ if λ(t) is nonnegative and continuous.

Remark 3 Choosing λ(t) ≡ 0 implies the uniqueness of the solutions of (17).

Proof In order to prove the uniqueness of the solution of (16), we only have to prove that
given two solutions with the same initial condition, the function �(t) = m0(0) − m0(t)

determined by the two solutions is the same, because m0(t) and (16) determines vk(t) for
all k uniquely. For a solution v(t) of (16) we can define U by (41), then X by Definition 9,
which satisfies (45) and the G of Definition 10 satisfies (53).

Assume that G1 and G2 are obtained this way from two solutions of (16) with the same
initial condition G(0,w). Let G̃ = G1 − G2 and �̃ = �1 − �2. Then

G̃(t,w) = −w · �̃(t) −
∫ t

0
�̃(s)ds.

Now by (15) we have θ(t) = 0, thus (44) =⇒ X(t,0) = 0, and (57) =⇒ minw G1(t,w) =
minw G2(t,w) = 0 and (58) =⇒ w∗

i (t) := argminwGi(t,w) ≥ 0 for i = 1,2, thus we have
G̃(t,w∗

1(t)) ≤ 0 and G̃(t,w∗
2(t)) ≥ 0. Thus �̃(t) and

∫ t

0 �̃(s)ds cannot have the same sign.
But if (t1, t2) is a maximal interval such that for t1 < t < t2 we have

∫ t

0 �̃(s)ds > 0 then∫ t1
0 �̃(s)ds = 0 and

t ∈ [t1, t2] =⇒
∫ t

0
�̃(s)ds ≥ 0 =⇒ �̃(t) ≤ 0 =⇒

∫ t

t1

�̃(s)ds ≤ 0

which contradicts the definition of t1 and t2. Thus
∫ t

0 �̃(s)ds ≤ 0 for all t and interchanging
the roles of G1 and G2 we get

∫ t

0 �̃(s)ds ≡ 0, so �1(t) ≡ �2(t). �

Lemma 4 If we find a function ϕ(t) such that defining �(t) := ∫ t

0 ϕ(s)ds and G(t,w) by
(53) we have

min
w

G(t,w) = 0 and w∗(t) = argmin
w

G(t,w) ≥ 0 (60)

for all t , then the solution of (12) with the same λ(·), �(·) and initial condition satisfies
(16).

Proof Since the Legendre-transformation is invertible, from (60) we get

X(t,0) = 0 and X′(t,0) ≤ 0.

X(t, u) is strictly decreasing for u < 0, thus it is the inverse function of an U(t, x) satisfying
U(t,0) = 0. If we plug �(·) into (12) then we get θ(t) = −U(t,0) = 0, therefore (15) is
satisfied. �



474 B. Ráth

Lemma 5 The � of the unique solution of (17) is

�(T ) =
{

0 if t ≤ T g,

F (0, T ) if t ≥ T g,
(61)

where T g = 1
m1(0)

.

∫ T

0
�(t)dt =

{
0 if T ≤ T g,

G(0, T ) if T ≥ T g.
(62)

Proof The solution is unique according to Lemma 3 and to prove its existence we only have
to find a function ϕ(t) that satisfies the criteria of Lemma 4 (with λ(t) ≡ 0). We will show
that

ϕ(t) = I

[
t ≥ 1

m1(0)

]
E(0, t) (63)

does the job. For t ≤ T g this is trivial by looking at (53): G(t,w∗(t)) = 0 and w∗(t) =
1

m1(0)
− t ≥ 0 if �(t) ≡ 0.

We will show that for t ≥ T g we have G(t,0) ≡ 0 and F(t,0) ≡ 0, that is w∗(t) ≡ 0.
F(0, T g) = G(0, T g) = 0 by (57) and w∗(0) = 1

m1(0)
= T g . F(t,0) = 0 follows from (54)

and

�(t) =
∫ t

0
ϕ(s)ds =

∫ t

T g

E(0, s)ds = F(0, t) − F(0, T g) = F(0, t).

By (53) we have

G(t,0) = G(0, t) −
∫ t

0
�(s)ds =

∫ t

T g

F (0, s)ds −
∫ t

T g

F (0, s)ds = 0. �

The well-posedness of the integral equation (17) implies that of the corresponding dif-
ferential equation, since m0(0) − �(t) = m0(t) is a continuous function of t , thus vk(t) are
differentiable.

We have shown that the solution of (17) has infinite first moment after the gelation time:
1

w∗(t)
= m1(t) = +∞ for all t ≥ T g .

Definition 11 Let E(0,w) denote the critical core of v(0) (see Definition 10).
For 1

m1(0)
≤ w1 ≤ w2 define

Einf (w1,w2) := min
w1≤w≤w2

E(0,w) and Esup(w1,w2) := max
w1≤w≤w2

E(0,w),

Esup := Esup

(
1

m1(0)
,+∞

)
, Einf (w) := Einf

(
1

m1(0)
,w

)
.

Lemma 6 If w ≥ 1
m1(0)

then the inequalities

m1(0)

m2(0)

1

w2
≤ E(0,w) ≤ 1

w2
(64)

hold. Thus Esup ≤ m1(0)2 and Einf (w) ≥ m1(0)

m2(0)
1

w2 .
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For all w ≥ 1
m1(0)

we have

∣∣E′(0,w)
∣∣≤ 4m2(0)2m3(0) =: D (65)

which implies

Esup(w1,w2) − Einf (w1,w2) ≤ D · (w2 − w1). (66)

Remark 4 If m1(0) = m2(0) then the upper and lower bounds in (64) coincide. This can
only happen if vk(0) = m1(0) · I[k = 1], this is the case known as the monodisperse initial
condition (the initial graph has no edges).

Proof Let U(x) := U(0, x). Recalling (52) E(0,− 1
U ′(x)

) = (−U ′(x))3

U ′′(x)
holds. The upper

bound of (64) follows from −U ′(x) ≤ U ′′(x), and −U ′(x)
m2(0)

m1(0)
≥ U ′′(x) holds because

log(−U ′(x)) is a convex function, thus U ′′(x)

U ′(x)
≥ U ′′(0)

U ′(0)
= m2(0)

−m1(0)
. The bound on the Lipschitz

constant (65) follows from

∣∣∣∣E′
(

0,− 1

U ′

)∣∣∣∣=
∣∣∣∣ (U

′)5U ′′′

(U ′′)3
− 3

(U ′)4

U ′′

∣∣∣∣≤ ∣∣(U ′)2U ′′′∣∣+ 3
∣∣(U ′)3

∣∣≤ 4m2(0)2m3(0). �

Now we turn our attention to the subcritical equation (16). We assume λ(t) > 0 for all t .
If we substitute x = 0 into the differential equation (42) and assume |U ′(t,0)| < +∞ then
(formally) we get

�̇(t) = ϕ(t) = −U ′(t,0) · λ(t) = m1(t)λ(t) = λ(t)

w∗(t)
.

Definition 12 If v(0) ∈ V∗ and λ(t) is a positive continuous function then the subcritical
control differential equation for w∗(t) is

ẇ∗(t) = λ(t)

w∗(t)E(0, t + w∗(t))
− 1 (67)

with initial condition w∗(0) = 1
m1(0)

= T g .

Lemma 7 The subcritical control differential equation is well-posed and the function

ϕ(t) := λ(t)

w∗(t)

(where w∗(t) is the solution of (67) with w∗(0) = 1
m1(0)

) satisfies the criteria of Lemma 4,
which implies the existence of solutions to (16).

Proof We prove the statement of the lemma on [0, T ]. The Picard-Lindelöf theorem and the
Lipschitz-continuity property (65) guarantee the existence and uniqueness of the solution of
(67) before the graph of the solution exits

{(t,w∗) : 0 ≤ t ≤ T , w∗
min ≤ w∗ ≤ w∗

max, w∗ + t ≥ w∗(0)} (68)

for some 0 < w∗
min < w∗

max < +∞.
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Let λinf := inf0≤t≤T λ(t), λsup := sup0≤t≤T λ(t). From (67) and a “forbidden region”-type

argument we get that w∗(t) + t ≥ w∗(0) and w∗(t) ≥ min{ λinf
Esup

,w∗(0)}, since

w∗(t) > 0 =⇒ d

dt
(w∗(t) + t) ≥ 0,

w∗(t) + t ≥ w∗(0) =⇒ E(0, t + w∗(t)) ≤ Esup,

thus w∗(t) <
λinf
Esup

=⇒ ẇ∗(t) > 0.
Now we prove that w∗(t) cannot grow too fast using the lower bound of (64). w∗(t) ≤

y(t) where y(0) = w∗(0) = T g and

ẏ(t) = λsup
m2(0)

m1(0)

(y(t) + t)2

y(t)
≤ λsup

m2(0)

m1(0)

(
T g + t

T g

)
· (y(t) + t)

since y(t) is increasing. Thus ẏ(t) ≤ a · y(t) + b for some a and b depending only on the
initial data, the function λ(t) and T . Thus

w∗(t) ≤ w∗(0)eat + b

a
· (eat − 1).

Now we can see that the graph of the solution of (67) indeed doesn’t exit (68) until t = T

if we define

w∗
min = min

{
λinf

Esup
, T g

}
and w∗

max :=
(

T g + b

a

)
eaT . (69)

Now we prove that ϕ(t) := λ(t)

w∗(t)
satisfies the criteria of Lemma 4 by showing that

G(t,w∗(t)) ≡ 0 and F(t,w∗(t)) ≡ 0.

This holds for t = 0, so it suffices to check d
dt

G(t,w∗(t)) ≡ 0 and d
dt

F (t,w∗(t)) ≡ 0. Us-
ing (54)

d

dt
F (t,w∗(t)) = E(0, t + w∗(t)) ·

(
1 + λ(t)

w∗(t)E(0, t + w∗(t))
− 1

)
− λ(t)

w∗(t)
= 0.

If we combine F(t,w∗(t)) ≡ 0 with (54) we get

F(0, t + w∗(t)) = �(t). (70)

It is straightforward to verify d
dt

G(t,w∗(t)) ≡ 0 by using (53) and (70). �

This completes the proof of the well-posedness of (16).

4 Proof of Theorem 2

We consider the sequence PN of probability measures on the compact space Ww[0, T ].
From Prokhorov’s theorem it follows that any subsequence of the measures PN contains a
sub-subsequence that converges weakly to a limiting measure on Ww[0, T ].
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Lemma 8 Any weak limit point of the measures PN is concentrated on the set of solutions
of the general frozen percolation equation (12).

– If μ(N) ≡ 1, then the λ(t) rate function of (12) is equal to the λ(t) of (4).
– If μ(N) � 1, then the λ(t) rate function of (12) is equal to 0.

Proof From (3) and (4) it follows that

LvN
k (t) := lim

dt→0
E
(
vN

k (t + dt) − vN
k (t)

∣∣ Ft

)

= 1

N

Vk(Vk − k)

2

(
−2

k

N

)
+
⎛
⎝∑

l �=k

1

N
· Vk Vl

⎞
⎠
(

− k

N

)

+
⎛
⎝

� k−1
2 �∑

l=1

1

N
Vl Vk−l + I[2|k] 1

N

(V k
2
− k

2 )V k
2

2

⎞
⎠ k

N
− λ(t) · μ(N)Vk

k

N

= −k · ((m0(0) − �N(t)) + λ(t)μ(N)) · vN
k + k

2

k−1∑
l=1

vN
l vN

k−l

+ 1

N

(
k2vN

k − I[2|k] · k2

4
vN

k
2

)
. (71)

M(t) = vN
k (t) − vN

k (0) − ∫ t

0 LvN
k (s)ds is a martingale and

LM2(t) := lim
dt→0

E
(
M2(t + dt) − M2(t)

∣∣ Ft

)= lim
dt→0

E
(
(vN

k (t + dt) − vN
k (t))2

∣∣Ft

)

≤
(

2
k

N

)2

·
((�m0(0)N�

2

)
1

N
+ �m0(0)N�λ(N)

)
= O

(
k2

N

)
.

Thus E(M(T )2) = E(
∫ t

0 LM2(s)ds) = O( 1
N

) if we fix k. It follows from Doob’s maximal
inequality that for all ε > 0, k ≥ 1 and T < +∞ we have

lim
N→∞

P
(

sup
0≤t≤T

∣∣∣∣vN
k (t) − vN

k (0) −
∫ t

0
LvN

k (s)ds

∣∣∣∣> ε

)
= 0. (72)

If we rewrite this equation in terms of the functions (wN
k (·))∞

k=1 the claim of the lemma
follows. �

Lemma 9 If 1
N

� μ(N), 0 < λinf ≤ λ(t) and v(0) ∈ V∗, then for any weak limit point P of
the sequence of probability measures PN on Ww[0, T ] we have

P (θ(t) ≡ 0) = 1. (73)

The subcritical and critical parts of Theorem 2 follow from Lemma 8 and Lemma 9:
any weak limit point P of the sequence PN is concentrated on the set of frozen percolation
evolutions satisfying (12) & (15). When μ(N) ≡ 1, P is concentrated on the unique solution
of (16), when 1

N
� μ(N) � 1 then P is concentrated on the solution of (17).

In the rest of this section we discuss the proof of Lemma 9.
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Lemma 10 We consider a solution of the general frozen percolation equation (12) with
initial condition v(0) ∈ V∗. If λ(t) ≡ 0 or 0 < λinf ≤ λ(t) ≤ λsup < +∞ then there is a
constant C∗ such that for all t1 ≤ t2 we have

θ(t2) − θ(t1) ≤ C∗ · (t2 − t1). (74)

Proof First we prove that there exists a constant C depending only on the initial data v(0)

and λinf such that

m1(t) ≤ C. (75)

If V (t, x) =∑∞
k=1 vk(t)e

−kx then by (12) we get

V̇ (t, x) = V ′(t, x) · ((m0(0) − �(t)) + λ(t) − V (t, x)) , (76)

V̇ ′(t, x) = V ′′(t, x) (m0(0) − �(t) − λ(t) − V (t, x)) − V ′(t, x)2. (77)

Substituting V (t, x) − (m0(0) − �(t)) ≤ 0 and −V ′(t,x)3

Esup
≤ V ′′(t, x) into (77) we get

d

dt

(−V ′(t, x)
)≤ V ′(t, x)2 ·

(
1 − λinf

Esup

(−V ′(t, x)
))

which implies −V ′(t, x) ≤ max{m1(0),
Esup
λinf

} =: C for all x > 0 and t by a “forbidden

region”-argument. Thus by letting x → 0+ we get (75).
Now we show that for some constant C2 we have

(V (t, x) − (m0(0) − �(t))V ′(t, x) ≤ C2 (78)

for all x > 0. If λinf ≤ λ(t), then by (75) and −m0(0) ≤ V (t, x) − (m0(0) − �(t)) ≤ 0 we
get (78) with C2 = m0(0)C.

Denote by U(t, x) := V (t, x)− (m0(0)−�(t)). If λ(t) ≡ 0 then by (76) and (77) we get

d

dt

(
U(t, x)V ′(t, x)

) = −2V ′(t, x)2U(t, x) − U(t, x)2V ′′(t, x) + V ′(t, x)
d

dt
�(t)

≤ (−U(t, x))V ′(t, x)2

(
2 − 1

Esup
U(t, x)V ′(t, x)

)
.

Thus we have (78) with C2 = max{m1(0),2Esup} again by a “forbidden region”-argument.
Substituting the bounds (75) and (78) into (76) we get

d

dt
(−V (t, x)) ≤ C2 + C · λsup =: C∗

for all x. Thus V (t1, x)−V (t2, x) ≤ C∗ · (t2 − t1). Letting x → 0+ and substituting into (13)
the claim of the lemma follows. �

We are going to prove Lemma 9 by contradiction: in Lemma 11 we show that if θ(·) �≡ 0
in the limit, then there is a positive time interval such that θ(t) has a positive lower bound,
and that this implies that even in the convergent sequence of finite-volume models, a lot of
mass is contained in arbitrarily big components on this interval. Than in subsequent lemmas
we prove that these big components indeed burn, which produces such a big increase in the
value of the burnt mass �(·) that is in contradiction with �(·) ≤ m0(0).
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For any frozen percolation evolution obtained from a frozen percolation Markov process
on a finite number of vertices we obviously have θN(t) ≡ 0 (see (9) and (13)), thus

∀K ∈ N

∑
k>K

vN
k (t) = m0(t) − wN

K(t) = m0(0) − �N(t) − wN
K(t). (79)

Lemma 11 If PN ⇒ P where P does not satisfy (73) on [0, T ], then there exist ε1, ε2,
ε3 > 0 and a deterministic t∗ ∈ [ε1, T ] such that for every K < +∞, every m < +∞ and
every sequence

t∗ − ε1 < α1 < β1 < α2 < β2 < · · · < αm < βm < t∗

there exists an N0 < +∞ such that for every N ≥ N0 and 1 ≤ i ≤ m we have

PN

(
max

αi≤t≤βi

∑
k>K

vN
k (t) > ε2

)
> ε3. (80)

Proof First we prove that if P does not satisfy (73) then there exist ε1, ε2, ε3 > 0 and ε1 ≤
t∗ ≤ T such that

P

(
inf

t∗−ε1≤t≤t∗
θ(t) > ε2

)
> ε3. (81)

Since (73) is violated, we have P(sup0≤t≤T θ(t) > ε) > ε for some ε > 0.
Let L := � 2C∗T

ε
� and ti := εi

2C∗ for 1 ≤ i ≤ L where C∗ is the constant in (74).
By Lemma 8 the random frozen percolation evolution obtained as a weak limit point

satisfies (12) with a possibly random control function �, so (74) holds P-almost surely for
the random element of Ww[0, T ] obtained as a weak limit point.

Since θ(0) = 0 we have

{
sup

0≤t≤T

θ(t) > ε
}

⊆
L⋃

i=1

{
θ(ti) >

ε

2

}

almost surely with respect to P. Thus P(θ(t∗) > ε
2 ) > ε

L
for some t∗ ∈ {t1, . . . tL}. Using (74)

again (81) follows with ε1 := ε
4C∗ , ε2 := ε

4 , ε3 = ε
L

.
Now given K and the intervals [αi, βi], 1 ≤ i ≤ m we define the continuous functionals

fi : Ww[0, T ] → R by

fi

(
(wk(·))∞

k=1 ,�(·)) := 1

βi − αi

∫ βi

αi

(
m0(0) − wK(t) − �(t)

)
dt.

Thus for all i

Hi := {((wk(·))∞
k=1 ,�(·)) ∈ Ww[0, T ] : fi

(
(wk(·))∞

k=1 ,�(·))> ε2}
is an open subset of Ww[0, T ] with respect to the topology of Definition 7. Thus by the
definition of weak convergence of probability measures we have

lim
N→∞

PN(Hi) ≥ P(Hi) ≥ P

(
inf

t∗−ε1≤t≤t∗
θ(t) > ε2

)
> ε3

from which the claim of the lemma easily follows by (79). �



480 B. Ráth

Lemma 12 If 1
N

� μ(N) and 0 < λinf ≤ λ(t), then for every ε2 > 0 there is a ε4 > 0 such
that for every t̃ > 0 there is a K and an N1 such that

∀N ≥ N1

∑
k>K

vN
k (0) ≥ ε2 =⇒ EN

(
�N(t̃)

)≥ ε4. (82)

The proof of Lemma 12. will follow as a consequence of Lemmas 13 and 14.

Proof of Lemma 9 We are going to show that if there is a sequence PN such that the weak
limit point P violates (73) then for some N we have

EN

(
�N(T )

)
> m0(0) (83)

which is in contradiction with (13).
We define ε1, ε2, ε3 > 0 and t∗ using Lemma 11. Next, we define ε4 using this ε2 and

Lemma 12. Given these, we choose t̃ be so small that
⌊ ε1

2t̃

⌋
ε3ε4 > m0(0).

We choose K and N1 big enough so that (82) holds for this t̃ . Further on, we fix the intervals
[αi, βi], 1 ≤ i ≤ m = � ε1

2t̃
� so that αi+1 − βi > t̃ holds for all i and also T − βm > t̃ holds.

We choose N0 such that (80) holds and let N := max{N0,N1}.
Finally, we define the stopping times τ1, τ2, . . . , τm by

τi := βi ∧ min

{
t : t ≥ αi and

∑
k>K

vN
k (t) ≥ ε2

}
.

We have τi + t∗ ≤ βi + t∗ < αi+1 ≤ τi+1.
Using the strong Markov property, (82) and (80), the inequality (83) follows:

E
(
�N(T )

) ≥
m∑

i=1

E
(
�N(τi + t∗) − �N(τi)

)

≥
m∑

i=1

E

(
E
(

(�N(τi + t∗) − �N(τi))I

[∑
k>K

vN
k (τi) ≥ ε2

] ∣∣∣∣Fτi

))

≥
m∑

i=1

ε4P

(∑
k>K

vN
k (τi) ≥ ε2

)
≥ mε4ε3 > m0(0).

�

For a frozen percolation evolution defined by (9) we have

U(t, x) =
∑
k≥1

vN
k (t)e−kx − (m0(0) − �N(t)) = V (t, x) − mN

0 (t) =
∑
k≥1

vN
k (t)

(
e−kx − 1

)
.

(84)
We will make use of the following generating function estimates in the proof of

Lemma 13.
If U(x) =∑

k≥1 vk(e
−kx − 1) where v ∈ V then

∑
k>K

vk ≥ ε =⇒ U(1/K) ≤ (e−1 − 1)ε, (85)
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U(1/K) ≤ −ε =⇒
∑

k> εK
2

vk ≥ ε/2. (86)

Lemma 13 There are constants C1 < +∞, C2 > 0, C3 > 0 such that if

∑
k>K

vN
k (0) ≥ ε2 (87)

for all N then

lim
N→∞

P
( ∑

k>C3ε2N1/3

vN
k (t) + �N(t) ≥ C2ε2

)
= 1, (88)

where t = C1
Kε2

.

Sketch proof If we let N → ∞ immediately, then by Lemma 8 we get that the limiting
functions v1(t), v2(t), . . . solve (14) with initial condition v(0), a possibly random control
function �(t) and some nonnegative rate function λ(t).

The N → ∞ limit of (88) is

θ(t) + �(t) ≥ C2ε2. (89)

Now we prove that if v(·) is a solution of (14) then
∑

k>K vk(0) ≥ ε2 implies (89) with
C1 = 4 and C2 = 1

4 . This proof will also serve as an outline of the proof of Lemma 13.
In order to prove (89) define V (t, x) by (39). Thus V (t, x) solves

V̇ (t, x) = V ′(t, x) · (m0(0) − �(t) + λ(t) − V (t, x)) . (90)

Define U(t, x) by (41). Define the characteristic curve x(·) by

ẋ(t) = V (t, x(t)) − (m0(0) − �(t) + λ(t)) , x(0) = 1

K
. (91)

Let ν(t) := V (t, x(t)). Now by (90) and (91) we get

ν̇(t) = V̇ (t, x(t)) + V ′(t, x(t))ẋ(t) = 0. (92)

Thus ν(t) ≡ ν(0), moreover by (41) we get U(t, x(t)) − U(0, x(0)) = �(t) and by
V (t, x(t)) ≡ V (0, x(0)), V (0, x(0)) − m0(0) = U(0, x(0)) and (91) we get

x(t) = 1

K
+
∫ t

0
�(s)ds −

∫ t

0
λ(s) ds + t · U

(
0,

1

K

)
. (93)

By (85) we have U(0, 1
K

) ≤ − 1
2ε2. In order to prove that θ(t) + �(t) ≥ 1

4ε2 with t = 4
Kε2

we consider two cases:
If �(t) ≥ 1

4ε2 then we are done. If �(t) < 1
4 ε2 define τ := min{t : x(t) = 0}. By (93) we

have

x(t) ≤ 1

K
+ t · �(t) + t ·

(
−1

2
ε2

)
<

1

K
+ 1

K
− 2

K
= 0.
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Thus τ ≤ t .

−θ(τ ) = U(τ,0) = U(τ, x(τ )) = U

(
0,

1

K

)
+ �(τ) ≤ −1

2
ε2 + 1

2
ε2 = −1

4
ε2.

Thus 1
4ε2 ≤ θ(τ ) ≤ θ(τ ) + �(τ) ≤ θ(t) + �(t) because by (13) the function θ(t) + �(t) is

increasing. �

To make this proof work for Lemma 13 we have to deal with the fluctuations caused by
randomness and combinatorial error terms.

Proof Given a frozen percolation evolution obtained from a Markov process by (9) define
U and V by (84).

Using (71) a straightforward calculation shows that

LV (t, x) := lim
h→0+

1

h
E
(
V (t + h,x) − V (t, x)

∣∣Ft

)

= V ′(t, x)
(
(m0(0) − �N(t)) + λ(t)μ(N) − V (t, x)

)

+ 1

N

(
V ′′(t, x) − V ′′(t,2x)

)
. (94)

Given the random function V (t, x) we define the random characteristic curve x(t) simi-
larly to (91):

ẋ(t) = V (t, x(t)) − (
(m0(0) − �N(t)) + λ(t)μ(N)

)
, x(0) = 1

K
. (95)

This ODE is well-defined although V (t, x) is not continuous in t , but almost surely it is a
step function with finitely many steps which is a sufficient condition to have well-posedness
for the solution of (95). Define ν(t) := V (t, x(t)).

x(t) = 1

K
+
∫ t

0
(ν(s) − ν(0)) ds +

∫ t

0
�N(s)ds − μ(N)

∫ t

0
λ(s)ds + t · U

(
0,

1

K

)
. (96)

Putting together (94) and (95) we get

lim
h→0+

1

h
E
(
ν(t + h) − ν(t))

∣∣Ft

)= 1

N

(
V ′′(t, x(t)) − V ′′(t,2x(t))

)= O
(

1

N
V ′′(t, x(t))

)
.

(97)
Thus ν̃(t) = ν(t) − ∫ t

0
1
N

(V ′′(s, x(s)) − V ′′(s,2x(s)))ds is a martingale and by (4) and (3)
we get

lim
h→0+

1

h
E
(̃
ν(t + h)2 − ν̃(t)2

∣∣Ft

)

= lim
h→0+

1

h
E
((

V (t + h,x(t)) − V (t, x(t))
)2 ∣∣Ft

)

≤ 1

2

N∑
k,l=1

(
k + l

N
e−(k+l)x(t) − k

N
e−kx(t) − l

N
e−lx(t)

)2

vN
k (t)vN

l (t)N
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+
N∑

l=1

(
l

N
e−lx(t)

)2

μ(N)λ(t)vN
l (t)N = O

(
1

N
V ′′(t, x(t))

)
. (98)

Define the stopping time

τN := min{t : x(t) = N−1/3}.

(Note that we could replace N−1/3 by N−γ , 0 < γ < 1/2 without changing the proof.)
It follows from (46), (97), (98) and Doob’s maximal inequality that

sup
0≤t≤T

|ν(t ∧ τN ∧ T ) − ν(0)| ⇒ 0 as N → ∞. (99)

By (85) and (87) we have

U(0, x(0)) ≤ (e−1 − 1)ε2 =: −ε5. (100)

Let

AN :=
{∫ τN ∧T

0
|ν(s) − ν(0)|ds ≤ 1

K

}
∩ { |ν(τN ∧ T ) − ν(0)| ≤ ε5/3

}
,

BN := {
�N(τN) ≤ ε5/3

}
.

t := 3

K |U(0, x(0))| ≤ 3

Kε5
,

We are going to show that there are constants C2,C3 < +∞ such that

AN ⊆
⎧⎨
⎩

∑
k>C3ε2N1/3

vN
k (t) + �N

(
t
)≥ C2ε2

⎫⎬
⎭ (101)

which together with (99) implies limN→∞ P(AN) = 1 and (88).
First we show that

AN ∩ BN ⊆ {τN ≤ t}. (102)

If we assume indirectly that AN , BN and τN > t hold then
∫ t

0 |ν(s) − ν(0)|ds ≤ 1
K

, so by
(96) we get

x(t) ≤ 1

K
+ 1

K
+
∫ t

0
�N(s)ds + tU(0, x(0)) ≤ − 1

K
+ t

ε5

3
≤ 0.

But x(t) ≤ 0 is in contradiction with τN > t , thus (102) holds. Assuming AN and BN we
obtain

|U(τN, x(τN)) − U(0, x(0))| ≤ |ν(τN) − ν(0)| + �N(τN) ≤ ε5/3 + ε5/3

which together with (100) implies AN ∩ BN ⊆ {U(τN,N−1/3) ≤ −ε5/3}.
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By (86)

AN ⊆ (AN ∩ BN) ∪ Bc
N ⊆

{ ∑
k>N1/3ε5/6

vN
k (τN) ≥ ε5/6

}
∪ {

�N(τN) > ε5/3
}

⊆
{ ∑

k>C3ε2N1/3

vN
k (τN) + �N(τN) ≥ C2ε2

}

with C2 = C3 = (1 − e−1)/6. But
∑

k>C3ε2N1/3 vN
k (t) + �N(t) is a monotone increasing

function of t , from which (101) follows. �

Lemma 14 There are constants C4 < +∞, C5 > 0 such that if

∑
k>C3ε2N1/3

vN
k (0) ≥ C2ε2/2

for all N then with

tN := C4ε
−2
2

(
N−1/3 log(N) + (Nμ(N))−1

)
(103)

we have

lim
N→∞

E
(
�N(tN)

)≥ C5ε2. (104)

Remark 5 The upper bound (103) is technical: on one hand it is not optimal, on the other
hand, for the proof of Lemma 12 we only need tN � 1 as N → ∞.

Proof If v is a vertex of the graph G(N, t) let CN(v, t) denote the connected component of
v at time t . Denote by τb(v) the freezing/burning time of v.

HN(t) := {v : |CN(v,0)| ≥ C3ε2N
1
3 and τb(v) > t}.

We fix a vertex v ∈ HN(0).

cN(t) := 1

N
|CN(v, t)| ,

wN(t) := 1

N
|HN(t)| ,

zN(t) := 1

N
|HN(0) \ HN(t)| = wN(0) − wN(t).

Thus cN(t) is an increasing process until τb(v), wN(t) is decreasing, zN(t) is increasing. We
consider the right-continuous version of the processes cN(t),wN(t), zN(t).

wN(0) ≥ C2ε2/2 =: ε6.

We are going to prove that there are constants C4 < +∞, C5 > 0 such that

lim
N→∞

E
(
zN(tN )

)≥ C5ε2 (105)
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with tN defined as in (103). This implies (104).
We define the stopping times

τw := min{t : wN(t) < ε6/2},
τg := min{t : cN(t) > ε6/4},
τ := τb(v) ∧ τw ∧ τg.

Let N̄ := C3ε2N
1
3 . Since v ∈ Hn(0) we have

cN(t) ≥ cN(0) = |CN(v,0)|
N

≥ N̄

N
.

If CN(v, t) is connected to a vertex in HN(t) by a new edge at time t then

cN(t+) − cN(t−) ≥ N̄

N
,

log(cN(t+)) − log(cN(t−)) ≥ log

(
1 + N̄

NcN(t−)

)
≥ log(2)N̄

NcN(t−)
,

lim
dt→0

1

dt
E
(

log(cN(t + dt)) − log(cN(t))
∣∣ Ft

)

≥ log(2)N̄

NcN(t)
lim
dt→0

1

dt
P
(

cN(t + dt) − cN(t) ≥ N̄

N

∣∣∣∣Ft

)

≥ log(2)N̄

NcN(t)
· 1

N
|CN(v, t)| (|HN(t)| − |CN(v, t)|) I{t ≤τb(v)}

≥ log(2)N̄ · (wN(t) − cN(t)) I{t ≤τb(v)}

≥ log(2)N̄
ε6

4
I{t≤τ } = N1/3 log(2)

8
· C2 · C3 · (ε2)

2 · I{t≤τ } =: a · I{t≤τ }.

Thus log(cN(t)) − a · (t ∧ τ) is a submartingale. Using the optional sampling theorem we
get

log(m0(0)) − a · E (τ ) ≥ E (log(cN(τ ))) − a · E (τ ) ≥ log(cN(0)) ≥ − log(N).

By Markov’s inequality we obtain that for some constant C < +∞

P
(
τ ≤ CN−1/3ε−2

2 log(N)
)≥ 1

2

if N is sufficiently large.
If τg ≤ τb(v), then CN(v, τg) >

ε6
4 N , so E(τb(v) − τg) ≤ (Nμ(N)λinf )

−1 4
ε6

, which im-
plies

P
(
τw ∧ τb(v) ≤ CN−1/3ε−2

2 log(N) + C ′(Nμ(N))−1ε−1
2

)≥ 1

4
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for some constant C ′. Define t of (103) with C4 := max{C,C ′}. Using the linearity of ex-
pectation we get

E
(
z(t)

)= E

⎛
⎝ 1

N

∑
w∈HN (0)

I{τb(w)≤t}

⎞
⎠≥ ε6P

(
τb(v) ≤ t

)
.

The inequality I{τw≤t}
ε6
2 ≤ z(t) follows from the definition of τw .

1

4
≤ P

(
τw ∧ τb(v) ≤ t

)≤ P
(
τw ≤ t

)+ P
(
τb(v) ≤ t

)≤ E
(
z(t)

) 2

ε6
+ E

(
z(t)

) 1

ε6
.

From which (105) follows. �

Lemma 12 is a straightforward consequence of Lemma 13 and Lemma 14.

5 Properties of the Solutions of the Frozen Percolation Equations

Proof of Theorem 5 It is clear from (63) and (65) that ϕ(t) is continuous. In order to prove
(23) we need Example (c) of Theorem 4 of Chap. XIII.5 of [4]. By (55)

X′′(t,0) = 1

E(t,0)
= 1

E(0, t)
= 1

ϕ(t)
,

X(t, u) = 1

2ϕ(t)
u2 + O(u3), lim

x→0

−U(t, x)√
x

=√
2ϕ(t).

By the Tauberian theorem for any t ≥ T g each of the relations

−U(t, x) ∼ x1−1/2
√

2ϕ(t) and
∞∑

k=K

vk(t) ∼ 1


( 1
2 )

K1/2−1
√

2ϕ(t)

implies the other, that is for any t ≥ T g

lim
x→0

−U(t, x)√
x

=√
2ϕ(t) ⇐⇒ lim

K→∞
K

1
2

∞∑
k=K

vk(t) =
√

2ϕ(t)

π
.

�

In order to compare the solutions of (19) and (17) we apply the transformations

v(t) → U(t, x) → X(t,u) → G(t,w) (106)

to the solutions of the alternating equations:
The integral equation

U(t, x) = U(0, x) +
∫ t

0
−U(s, x)U ′(s, x)ds + �(t) (107)
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holds, but �(t) is constant between burning times and jumps by θ(T b
i ) at T b

i , which means
that the giant component is burnt:

lim
ε→0

−U(T b
i + ε,0) = lim

ε→0
θ(T b

i + ε) = θ(T b
i+) = 0.

By Lemma 1 the formulae (45), (53), (54) and (55) are valid (with rate function λ(t) ≡ 0).
In between the burning times T b

i < t ≤ T b
i+1 we have

X(t,u) = X(T b
i+, u) + (t − T b

i )u and G(t,w) = G(T b
i+,w + (t − T b

i )).

If t − T b
i > w∗(T b

i+) then v(t) is supercritical:

X′(t,0) > 0, θ(t) > 0, X(t,−θ(t)) = 0, X′(t,−θ(t)) < 0.

minw G(t,w) = 0 still holds, but argminwG(t,w) = w∗(t) < 0 in the supercritical phase.
Thus −X′(t,0) = w∗(t) is well-defined for all t ≥ 0 for the solutions of (16), (17) and (19)
as well, moreover (59) holds. For the solutions of (19) w∗(t) is left-continuous.

By G(t,w∗(t)) ≡ 0, (53) and (70) we get

∫ t

0
�(s)ds = G(0, t + w∗(t)) − w∗(t)F (0, t + w∗(t)) (108)

for the solutions of (19).
If v(t) is the solution of (16), (17) or (19) started from v(0) ∈ V∗, then (55) holds: the

evolution of the critical core does not depend on the rate of lightnings. One extra parameter
is needed to determine v(t) and θ(t): if we know w∗(t), then

F(t,w) =
∫ w

w∗(t)

E(0, t + y)dy and G(t,w) =
∫ w

w∗(t)

(w − y)E(0, t + y)dy (109)

has all the information about v(t) and θ(t), since the transformations (106) are invertible
(using analytic extensions).

Proof of Claim 1 First assume m0(0) = 1. As a consequence of Remark 4 we can see that

E(t,w) = E(0, t + w) = 1

(w + t)2
= 1

t2
E

(
1,

w

t

)
, (110)

but this is the critical core of 1
t
v(1), and together with w∗(t) ≡ 0 for t ≥ T g = 1 the identity

vk(t) = 1
t
vk(1) follows. We get the explicit formula for vk(1) in the following way: since

X(1, u) = X(0, u) + u, the inverse function of V (1, x) is − log(v) + v − 1, thus

V (1, x) = −W
(−e−(x+1)

)=
∞∑

k=1

kk−1

k! e−ke−kx,

where W is the Lambert W function, the inverse function of z �→ zez.
If m0(0) �= 1 but we still have a monodisperse initial condition then (110) still holds and

for t ≥ 1
m0(0)

= T g we have w∗(t) = 0 thus vk(t) = 1
t

kk−1

k! e−k must hold. �
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Proof of Theorem 7 Let H(w) := F(0,w) − m0(0), thus H(− 1
V ′(0,x)

) = −V (0, x) by (52).
Using Lemma 5 and (54) we get

F(t,w) = H(t + w) − H(t) and m0(t) = F(t,+∞) = −H(t)

for t ≥ T g . v1(0) > 0 implies limx→∞ −V ′(0,x)

V (0,x)
= 1, so limt→∞ t ·H(tw) = − 1

w
, from which

limt→∞ tm0(t) = 1 follows. Moreover

1 − 1

w + 1
= lim

t→∞ t · (H(t · (w + 1)) − H(t)) = lim
t→∞ t · F(t, tw) = lim

t→∞ F̂ (t,w),

where v̂k(t) = tvk(t). This implies the pointwise convergence of the monotone functions
X̂′(t, u), X̂(t, u), Û (t, x) and V̂ (t, x) to the desired limit as t → ∞. The convergence of
v̂k(t) to kk−1

k! e−k follows from the continuity theorem of Laplace transforms. �

Proof of Theorem 6 It is easy to check that if ṽk(t) = vk(t)e
−kx∗(t), then Ṽ (t, x) = V (t, x +

x∗(t)), so x̃∗(t) = 0 and w̃∗(t) = 0, but Ẽ(t,w) = E(0, t +w) = E(t,w), so ṽ(t) is identical
to the solution of (17) at time t . �

Proof of Theorem 10 If we consider the solution of (16) with given initial data and lightning
rate function λ(t) ≥ 0,0 ≤ t ≤ T then (53) provides us with a relation between our cost
(
∫ T

0 λ(t)dt ) and reward (
∫ T

0 �(t)dt ).
We prove (35) by considering the cases T ≥ T g and T ≤ T g separately.
According to (62), for T ≥ T g we get

0 ≤ Gsub(T ,0) =
∫ T

0
�crit(t)dt −

∫ T

0
�sub(t)dt +

∫ T

0
λ(t)dt

by substituting w = 0 into (53).
For T ≤ T g , we want to prove 0 ≥ ∫ T

0 �sub(t)dt − ∫ T

0 λ(t)dt . Substitute w = T g − T

into (53). Since G(0, T g) = 0 and (T g − T )�sub(T ) ≥ 0 we get

0 ≤ Gsub(T ,T g − T ) ≤ −
∫ T

0
�sub(t)dt +

∫ T

0
λ(t)dt.

The proof of the extremum property (36) is equally simple. �

If we want to maximize our cost functional for a fixed T > T g , the optimal control is not
unique, since the only thing we need for

∫ T

0
�sub(t)dt −

∫ T

0
λ(t)dt =

∫ T

0
�crit(t)dt (111)

to hold is Gsub(T ,0) = 0: if v(T ) is critical at time T , then the value of the functional is
optimal.

Proof of Remark 2 In order to prove (37) first pick an arbitrary λ > 0 and solve (67) with
constant λ(t) = λ. Since w∗(t) > 0 and w∗(0) = T g there is a 0 < t∗ ≤ T such that w∗(t∗) =
T − t∗, and the lightning rate function λ(t) = λ · I[t ≤ t∗] makes T a critical time, so (111)
holds, thus (37).
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Now we prove (38). By using (108) we have to show that

G(0, T + w∗(T )) − (w∗(T ) − ε)F (0, T + w∗(T )) > G(0, T ) + εF (0, T ).

Using G(0, T + w∗(T )) − G(0, T ) > w∗(T )F (0, T ) it is easy to see that 0 < w∗(T ) ≤ ε

is sufficient for this to hold. If there is a T g < t∗ ≤ T such that −X′(t∗,−θ(t∗)) =
T − t∗ + ε, then burning the giant component at time t∗ we get −X′(t∗+,0) = T − t∗ + ε

and −X′(T ,0) = w∗(T ) = ε. If not, then burning at time T yields 0 < −X′(T ,−θ(T )) =
w∗(T+) < ε. �

6 Proof of the Subcritical Limit Theorem

In order to prove Theorem 8, we need to know more about the solution of (67).

Lemma 15 If y(t) is the solution of the differential equation ẏ(t) = c
y(t)

− 1 with initial

condition y(0) = T g and t ≥ T g + c log( T g

c
) then y(t) ≤ 2c.

Proof The solution of this differential equation is

y(t) = c ·
(

1 + W

(
exp

(
T g − t

c
− 1

)
·
(

T g

c
− 1

)))
, (112)

where W is the Lambert W function. Thus W(x) ≤ x and our claim follows. �

Lemma 16 If w∗(t) is the solution of (67) with constant λ(t) ≡ λ ≤ 1 then there exist d1

and d2 which depend only on v(0) and T such that

T g + d1λ log

(
1

λ

)
≤ t ≤ T =⇒

∣∣∣∣w∗(t) − λ

E(0, t)

∣∣∣∣≤ d2λ
2.

Proof We have a uniform a priori bound w∗(t) ≤ w∗
max for all λ ≤ 1 depending only on the

initial data and T by (69). Thus by Lemma 6 we have

0 < Einf := Einf(T + w∗
max) ≤ E(0, t + w∗(t))

and substituting this inequality into (67) we get

ẇ∗(t) ≤ λ

w∗(t)Einf
− 1. (113)

Using Lemma 15 we get

t̂ := T g + λ

Einf
log

(
EinfT

g

λ

)
≤ t ≤ T =⇒ w∗(t) ≤ 2

λ

Einf
.

Define

z(t) := w∗(t)E(0, t + w∗(t))
λ

− 1.
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Using (67) we get

ż(t) = − 1

w∗(t)
z(t) + E′(0, t + w∗(t))

E(0, t + w∗(t)
. (114)

For t̂ ≤ t ≤ T we have

−1 ≤ z(t̂) ≤ 2
Esup

Einf
,

1

w∗(t)
≥ 1

2

Einf

λ
,

∣∣∣∣E
′(0, t + w∗(t))

E(0, t + w∗(t)

∣∣∣∣≤ D

Einf
(115)

with the D of (65). Solving the linear ODE (114) and using the inequalities (115) we get

|z(t)| ≤ 2
Esup

Einf
exp

(
−1

2

Einf

λ
(t − t̂ )

)
+ λ

2D

E2
inf

.

Thus for t ≥ t̂ + 2
Einf

λ log( 1
λ
) we have |z(t)| = O(λ), which implies

w∗(t) − λ

E(0, t + w∗(t))
= O(λ2).

If we combine this with ∣∣∣∣ λ

E(0, t + w∗(t))
− λ

E(0, t)

∣∣∣∣≤ λ22
D

E3
inf

the claim of the Lemma follows. �

From this λmλ
1(t) − E(0, t) = ϕλ(t) − ϕcrit(t) = O(λ) follows which proves (31). Now

we prove (33) using Laplace transforms:

Lemma 17 Let Uλ(t, x) be the solution of (42) with a fixed initial condition U(0, x) ob-
tained from v(0) ∈ V∗ and λ(t) ≡ λ. Then for any t > T g we have

lim
λ→0

U ′
λ(t,

λ2

2E(0,t)
x)

U ′
λ(t,0)

= 1√
1 + x

. (116)

Proof Fix λ > 0 and denote the solution of (42) with λ(t) ≡ λ by U(t, x). For all t ≥ 0 we
have

X′′(t, u) ≥ 1

Esup
=⇒ X(t,u) ≥ 1

2Esup
u2 =⇒ |U(t, x)| = O(

√
x).

We use the shorthand notation E = E(0, t + w∗(t)).

X′(t, u) = −w∗(t) + u

E
+ O(u2), X(t, u) = −uw∗(t) + u2

2E
+ O(u3),

U(t, x) = Ew∗(t) −
√

(Ew∗(t))2 + 2E(x − O(U(t, x)3))

= Ew∗(t) −
√

(Ew∗(t))2 + 2Ex + O(x),
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U ′(t, x) = 1

X′(t,U(t, x))
= 1

−w∗(t) + U(t,x)

E

+ O(1)

= −1√
w∗(t)2 + 2

E
x + O(x)

+ O(1) = −1√
w∗(t)2 + 2

E
x

+ O(1).

Because of Lemma 16 we have

lim
λ→0

λ2

E(0, t + w∗
λ(t))E(0, t)w∗

λ(t)
2

= 1

from which the claim of this lemma follows. �

The r.h.s. of (116) is the Laplace transform of the 
( 1
2 ,1) distribution and the r.h.s. of (33)

is the distribution function of the 
( 1
2 ,1) distribution, so (33) follows from the continuity

theorem of Laplace transforms.

Proof of Theorem 3 First observe that instead of proving uniform convergence of �n to �crit

we only need to show convergence on [0, T ] for any T , because

T ≥ T g =⇒ m0(T ) =
∫ ∞

T +w∗(T )

E(0,w)dw ≤
∫ ∞

T

1

w2
dw = 1

T

by (64), thus 0 ≤ �n(t)−�crit(t) ≤ 1
T

for t ≥ T . If we prove that w∗(t) is small for t ≥ 1
m1(0)

then we are done by (70) and Lemma 5, since

0 ≤ �n(t) − �crit(t) = F(0, t + w∗
n(t)) − F(0, t) ≤ w∗

n(t)Esup, t ≥ T g,

�n(t) ≤ �n(T
g) = F(0, T g + w∗

n(T
g)) ≤ w∗

n(T
g)Esup, t ≤ T g.

(117)

We can give an upper bound on w∗(t) for t ≥ T g if we replace λ(t) with λsup in (67):
using (113) we get w∗(t) = O

(
λ log( 1

λ
)
)

if we substitute t ≥ T g and c = λsup
Einf

into (112),

thus limn→∞ w∗
n(t) = 0 uniformly for T g ≤ t ≤ T .

We obtain limn→∞ vn
k (t) = vk(t) for k = 1,2, . . . by the uniform convergence of mn

0(t)

and λn(t) to the critical m0(t) = m0(0) − �(t) and λ(t) ≡ 0 in (16). �

7 Proof of the Alternating Limit Theorem

We turn our attention to the proof of Theorem 4 and Theorem 9.
In this section we assume m0(0) = 1 but the results generalize easily to the m0(0) �= 1

case, since if v(t) is the solution of (19) with burning times T b
1 , T b

2 , . . . then m0(0)v(m0(0)t)

is also a solution of (19) with burning times
T b

1
m0(0)

,
T b

2
m0(0)

, . . . .

Definition 13 If v(t) is a solution of (19), let w∗+(t) := 1
m1(t)

.
If w∗(t) ≥ 0 then w∗+(t) = w∗(t), but if w∗(t) < 0 then w∗+(t) = −X′(t,−θ(t)).

If t is a burning time then w∗(t+) := limε→0 w∗(t + ε) = w∗+(t).
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Lemma 18 We consider the solution of (19) on [0, T ] with an arbitrary sequence of burning
times. If T g ≤ t ≤ T and w∗(t) < 0 then

θ(t) ≥ m1(0)

m2(0)

1

T 2

∣∣w∗(t)
∣∣ , (118)

w∗
+(t) ≤ 4

√
m2(0)

m1(0)
exp

(
m2(0)

m1(0)
T + 1

)
· ∣∣w∗(t)

∣∣=: C(T ,v(0))
∣∣w∗(t)

∣∣ . (119)

If w∗(t) < 0 and if

w1 + ∣∣w∗(t)
∣∣≤ t ≤ w2 −

√
Esup(w1,w2)

Einf(w1,w2)

∣∣w∗(t)
∣∣ (120)

holds then

−
√

Einf(w1,w2)

Esup(w1,w2)
w∗(t) ≤ w∗

+(t) ≤ −
√

Esup(w1,w2)

Einf(w1,w2)
w∗(t), (121)

−2Einf(w1,w2)w
∗(t) ≤ θ(t) ≤ −2Esup(w1,w2)w

∗(t). (122)

Proof By (49), w∗+(t) = −X′(t,−θ(t)), (109) and (64) we get

θ(t) = F(t,w∗
+(t)) ≥

∫ 0

w∗(t)

m1(0)

m2(0)

1

(t + y)2
dy ≥ m1(0)

m2(0)

1

T 2

∣∣w∗(t)
∣∣ .

Rearranging (50) and using (49) we get that w = w∗+(t) is the positive root of the function

f (w) := G(t,w) − F(t,w)w = G(t,0) +
(

−
∫ w

0
yE(t, y)

)
dy = f (0) + (f (w) − f (0)) .

We prove (119) by considering the cases |w∗(t)|
t

≤ 1
4

√
m1(0)

m2(0)
and |w∗(t)|

t
> 1

4

√
m1(0)

m2(0)
separately.

If |w∗(t)|
t

≤ 1
4

√
m1(0)

m2(0)
, then we prove that w∗+(t) ≤ 2

√
m2(0)

m1(0)
|w∗(t)| by showing that f (0) ≤

|f (w) − f (0)| with w = 2
√

m2(0)

m1(0)
|w∗(t)|.

f (0) =
∫ 0

w∗(t)

(−y)E(0, t + y)dy ≤
∫ |w∗(t)|

0

y

(t − y)2
dy

by (109) and (64).

|f (w) − f (0)| ≥
∫ w

0

m1(0)

m2(0)

y

(t + y)2
dy =

∫ |w∗(t)|
0

m1(0)

m2(0)

y

(t
|w∗(t)|

w
+ y)2

dy. (123)

It is straightforward to check that

0 ≤ y ≤ ∣∣w∗(t)
∣∣ &

|w∗(t)|
t

≤ 1

4

√
m1(0)

m2(0)
=⇒ y

(t − y)2
≤ m1(0)

m2(0)

y

(t
|w∗(t)|

w
+ y)2

which is sufficient for f (0) ≤ |f (2
√

m2(0)

m1(0)
|w∗(t)|) − f (0)| to hold.
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If |w∗(t)|
t

> 1
4

√
m1(0)

m2(0)
, then

f (0) = G(t,0) =
∫ 0

w∗(t)

F (t, y)dy ≤ ∣∣w∗(t)
∣∣≤ T

since by (52) we have F(t, y) ≤ m0(t) ≤ m0(0) = 1. Calculating the middle integral in (123)
we get that in order to have f (0) ≤ |f (w) − f (0)|

m1(0)

m2(0)

(
log

(
1 + w

t

)
− 1

)
≥ T

is sufficient. Rearranging this and using |w∗(t)|
t

> 1
4

√
m1(0)

m2(0)
we obtain (119).

The proof of the upper bound of (121) is similar: using (109) we get that w1 ≤ t −
|w∗(t)| ≤ t + w ≤ w2 implies

f (0) ≤ 1

2
Esup(w1,w2)w

∗(t)2, f (w) − f (0) ≤ −1

2
Einf(w1,w2)w

2.

Using (120) the inequality f (−
√

Esup(w1,w2)

Einf (w1,w2)
w∗(t)) ≤ 0 follows. The lower bound of (121)

is verified similarly.
If u ∈ [−θ(t),0], then

X(t,u) ≤ −w∗(t)u + 1

2

1

Einf (w1,w2)
u2,

since X′′(t, u) with u ∈ [−θ(t),0] is equal to 1
E(0,t+y)

for some

y ∈ [w∗(t),w∗
+(t)] ⊆

[
w∗(t),−

√
Esup(w1,w2)

Einf (w1,w2)
w∗(t)

]
,

thus t + y ∈ [w1,w2] by (120). This implies the lower bound of (122), and the proof of the
upper bound is similar. �

The proof of Theorem 4 is similar that of Theorem 3: if ε = supi{T b
i+1 −T b

i } and T b
i < t ≤

T b
i+1 then w∗(t) = w∗+(T b

i )−(t −T b
i ) ≥ −ε and by (119) we have w∗+(T b

i ) = O(|w∗(T b
i |)) =

O(ε) on [0, T ].

Lemma 19 We consider the solution of (19) with initial critical core E(0,w). If T
g

1 < T
g

2
are two consecutive gelation times, then the unique burning time in between T

g

1 and T
g

2 is

T b(T
g

1 , T
g

2 ) =
∫ T

g
2

T
g
1

yE(0, y)dy

∫ T
g
2

T
g
1

E(0, y)dy

. (124)

Moreover

θ(T b(T
g

1 , T
g

2 )) =
∫ T

g
2

T
g
1

E(0, y)dy. (125)
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Proof T b needs to satisfy T
g

2 −T b = w∗+(T b), but by the proof of Lemma 18 w∗+(T b) is the

unique positive root of G(T b,0) − ∫ w

0 yE(0, T b + y)dy. G(T b,0) = − ∫ 0
T

g
1 −T b yE(0, T b +

y)dy by (109), so
∫ T

g
2 −T b

T
g
1 −T b yE(0, T b +y)dy = 0 must hold, from which (124) easily follows.

By (49), w∗+(t) = −X′(t,−θ(t)) and (109) we get

θ(T b) = F(T b,w∗
+(T b)) =

∫ w∗+(T b)

w∗(T b)

E(0, T b + y)dy =
∫ T

g
2

T
g
1

E(0, y)dy, �

Definition 14 If v(t) is the solution of the random alternating equations (see Definition 6),
denote by T b

1 < T b
2 < · · · the sequence of random burning times and by T g = T

g

1 < T
g

2 < · · ·
the sequence of random gelation times. Indeed T

g

1 < T b
1 < T

g

2 < T b
2 < · · · .

Let τi := T
g

i+1 − T
g

i be the length of the i-th critical interval.

N(t) := max{i : T g

i < t}, τ (t, i) := τN(t)+i ,

τ (t,0) is the length of the critical interval containing t .
Let θ(t, i) := θ(T b

N(t)+i ), thus θ(t,1) is the frozen mass of the first giant component born
after t .

w∗
−(t, i) := T b

N(t)+i − T
g

N(t)+i = −w∗(T b
N(t)+i ),

w∗
+(t, i) := T

g

N(t)+i+1 − T b
N(t)+i = w∗

+(T b
N(t)+i ).

Definition 15 A nonnegative random variable X has Rayleigh distribution with parame-
ter σ , briefly X ∼ R(σ), if

P (X > x) = exp

(
− 1

2σ 2
x2

)
=: R(σ,x),

E(X) = σ
√

π
2 . Y has a size-biased Rayleigh distribution with parameter σ , briefly Y ∼

Rsb(σ ) if

P (Y > y) = E (X · I[X > y])
E (X)

= Rsb(σ, y).

The scaling identities

R(σ,x) = R(aσ,ax) and Rsb(σ, x) = Rsb(aσ, ax) (126)

are valid for a > 0.

The r.h.s of (34) is Rsb(
1√
2
, x).

The Rayleigh distribution emerges in our setting in the following way: if we consider the
solution of the random alternating equations with burning times defined by a homogenous
Poisson process with rate λ, forget about the error terms in (122) by assuming w1 = w2 then
θ(t) = 2E · (t − T

g

i ) if T
g

i < t ≤ T b
i , so

P
(
T b

i − T
g

i > w
)= exp

(
−λ

∫ w

0
2Esds

)
= R

(
1√
2Eλ

,w

)
.
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From θ(T b
i ) = 2E · (T b

i − T
g

i ) and (126) we get θ(T b
i ) ∼ R(

√
2E
λ

). Assuming w1 = w2 in

(121) we get w∗+(T b
i ) = −w∗(T b

i ), thus τi ∼ R(

√
2

Eλ
).

Lemma 20 If v(t) is the solution of the random alternating equations with constant rate
function λ(t) ≡ λ then for every T g ≤ t ≤ T we have

E
(
θ(T b

N(t))I[T b
N(t) < T ])= O(λ− 1

2 ), (127)

E
(
T

g

N(t)+1 ∧ T − t
)= O(λ− 1

2 ) (128)

as λ → ∞ where the constant in the O depends only on the initial data and T .

Proof Let γ (t) := t − T
g

N(t). Then

lim
dt→0

1

dt
E (γ (t + dt) − γ (t) | Ft )

= 1 − γ (t) lim
dt→0

1

dt
P
(
t ≤ T

g

N(t)+1 ≤ t + dt | Ft

)

= 1 − γ (t) lim
dt→0

1

dt
P
(
T b(T

g

N(t), t) ≤ T b
N(t) ≤ T b(T

g

N(t), t + dt) | γ (t)
)

= 1 − γ (t)θ(T b(T
g

N(t), t))λ
d

ds
T b(T

g

N(t), s)

∣∣∣∣
s=t

= 1 − λE(0, t)γ (t)
(
t − T b(t − γ (t), t)

)≤ 1 − 1

2
λ

Einf (T )2

Esup
γ (t)2

by Lemma 19. Taking the expectation of both sides of the above inequality and applying
Jensen’s inequality we get

d

dt
E (γ (t)) ≤ 1 − 1

2
λ

Einf (T )2

Esup
E (γ (t))2 .

This differential inequality together with γ (T g) = 0 implies

E (γ (t)) ≤ 1√
λ

√
2Esup

Einf (T )
= O(λ− 1

2 ), T g ≤ t ≤ T

by a “forbidden region”-type argument. Now we prove

E
(
T

g

N(t)+1 ∧ T − T
g

N(t)

)= O(λ− 1
2 ) (129)

from which (128) trivially follows. We obtain (127) using (129) and θ(T b
N(t)) ≤ 2Esup ·

(T b
N(t) − T

g

N(t)) by the upper bound of (122).

T
g

N(t)+1 ∧ T − T
g

N(t) = γ (t) + (
T

g

N(t)+1 ∧ T − t
)
I[t ≥ T b

N(t)]
+ (

T
g

N(t)+1 ∧ T − T b
N(t) ∧ T

)
I[t < T b

N(t)]
+ (

T b
N(t) ∧ T − t

)
I[t < T b

N(t)],
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(
T

g

N(t)+1 ∧ T − t
)
I[t ≥ T b

N(t)] ≤ w∗
+(t,0)I[t ≥ T b

N(t)]
≤ C(T ,v(0))w∗

−(t,0)I[t ≥ T b
N(t)] ≤ C(T ,v(0))γ (t),

where C(T ,v(0)) is defined in (119).

(
T

g

N(t)+1 ∧ T − T b
N(t) ∧ T

)
I[t < T b

N(t)] ≤ w∗
+(t,0)I[t < T b

N(t) ≤ T ]
≤ C(T ,v(0))γ (t)

+ C(T ,v(0))
(
T b

N(t) ∧ T − t
)
I[t < T b

N(t)].
By (22) and (118) we have

E
((

T b
N(t) ∧ T − t

)
I[t < T b

N(t)]
)

= E
((

T b
N(t) ∧ T − t

)∨ 0
)

=
∫ T −t

0
P
(
T b

N(t) − t ≥ x
)
dx ≤

∫ T −t

0
exp

(
−λ

∫ x

0

m1(0)

m2(0)

1

T 2
ydy

)
= O(λ− 1

2 ),

E
(
T

g

N(t)+1 ∧ T − T
g

N(t)

)= O(E (γ (t))) + O
(
E
((

T b
N(t) ∧ T − t

)∨ 0
))= O(λ− 1

2 ). �

Sketch proof of Theorem 9 Our aim is to make the following argument rigorous: Let

n(λ) :=
⌊
δ(λ)

√
E(t,0)λ

π

⌋
.

If 1 � λ then θ(t,1), θ(t,2), . . . , θ(t, n(λ)) are “almost” i.i.d. with distribution θ(t, i) ∼
R(

√
2E(t,0)

λ
). τ(t, i) ≈ θ(t,i)

E(t,0)
, so

n(λ)∑
i=1

τ(t, i) ≈ δ(λ)

by the weak law of large numbers. Substituting x̂ = 2
√

E(t,0)

λ
x into

�
(
t + δ(λ), x̂

)− �
(
t, x̂

)
δ(λ)E(t,0)

≈
∑n(λ)

i=1 θ(t, i) · I[θ(t, i) > x̂]∑n(λ)

i=1 θ(t, i)
≈ E

(
θ(t,1)I[θ(t,1) > x̂])

E (θ(t,1))

we get (34). �

Proof of Theorem 9 We use the notations of Definitions 14 and 15.

E := E(t,0) = E(0, t) = ϕcrit(t).

We fix x ≥ 0 and define

x̂ := 2

√
E

λ
x, θ(t, i, x̂) := θ(t, i)I[θ(t, i) > x̂], n(λ, z) :=

⌊
δ(λ)

√
Eλ

π
(1 + z)

⌋
.

By the assumption λ− 1
2 � δ(λ) we have limλ→∞ n(λ, z) = +∞ for any −1 < z.
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Let m(λ) := N(t + δ(λ)) − N(t) − 1.

�
(
t + δ(λ), x̂

)− �
(
t, x̂

) = θ(t,0, x̂)I[T b
N(t) > t]

+
m(λ)∑
i=1

θ(t, i, x̂)

+ θ(t + δ(λ),0, x̂)I[T b
N(t+δ(λ)) < t + δ(λ)]. (130)

In order to prove (34) we only need to show that we have limλ→∞ P (B(λ, ε)) = 1 for
every ε > 0 where

B(λ, ε) :=
{
Rsb(

1√
2
, x) − ε <

∑m(λ)

i=1 θ(t, i, x̂)

Eδ(λ)
< Rsb(

1√
2
, x) + ε

}

because the first and the last term on the r.h.s. of (130) divided by Eδ(λ) converge to 0 in
probability as λ → ∞ by (127) and λ− 1

2 � δ(λ).

Esup(λ) := Esup(t, t + 2δ(λ)), Einf (λ) := Einf (t, t + 2δ(λ)).

By (66) we have

Esup(λ) ≤ E + 2Dδ(λ) and E − 2Dδ(λ) ≤ Einf (λ),

Cu(λ) := 1 +
√

Esup(λ)

Einf (λ)
Cl(λ) := 1 +

√
Einf (λ)

Esup(λ)
,

(131)

limλ→∞ Cu(λ) = limλ→∞ Cl(λ) = 2, since δ(λ) � 1.
We are going to couple the random variables T

g

N(t)+1,w
∗−(t,1),w∗−(t,2), . . . to

wl
−(1),wl

−(2), . . . and wu
−(1),wu

−(2), . . . ,

where wl−(i) ∼ R( 1√
2Esup(λ)λ

) are i.i.d. and wu−(i) ∼ R( 1√
2Einf (λ)λ

) are i.i.d., moreover the

auxiliary random variables are independent from T
g

N(t)+1. If we define the events

Au(λ, z, z2) :=
{

T
g

N(t)+1 + Cu(λ) ·
n(λ,z)∑
j=1

wu
−(j) ≤ t + δ(λ) · (1 + z2)

}
,

Al(λ, z, z2) :=
{

T
g

N(t)+1 + Cl(λ) ·
n(λ,z)∑
j=1

wl
−(j) ≥ t + δ(λ) · (1 + z2)

}

then it is an easy consequence of (128), λ− 1
2 � δ(λ), and the weak law of large numbers

that

−1 < z < z2 =⇒ lim
λ→∞ P (Au(λ, z, z2)) = 1,

z > z2 > −1 =⇒ lim
λ→∞ P

(
Al(λ, z, z2)

)= 1.
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Our coupling is going to satisfy

Au(λ, z,1) ⊆
n(λ,z)⋂
i=1

{wl
−(i) ≤ w∗

−(t, i) ≤ wu
−(i)} (132)

for any z.
The joint construction of wl−(j), w∗−(t, j) and wu−(j) for j = 1,2, . . . is as follows: given

T
g

N(t)+1 and w∗−(t,1), . . . ,w∗−(t, j − 1) we can determine T
g

N(t)+j by solving (19). For s ≥ 0
Let

μ(s) := λθ(T
g

N(t)+j + s), μl(s) := λ2Esup(λ)s, μu(s) := λ2Einf (λ)s.

Let w∗−(t, j), wl−(j) and wu−(j) be the horizontal coordinate of the leftmost point below
the graphs of μ, μl and μu of the same standard uniform 2-dimensional Poisson process
on the first quadrant of the plane. Thus wl−(j) ∼ R( 1√

2Esup(λ)λ
), wu−(j) ∼ R( 1√

2Einf (λ)λ
) are

independent from everything that was constructed earlier and P(wl−(j) ≤ wu−(j)) = 1. The
joint distribution of T

g

N(t)+1,w
∗−(t,1), . . . ,w∗−(t, j) agrees with that of the solution of the

random alternating equation.
We are going to prove (132) by induction. Assume that Au(λ, z,1) holds. If

j−1⋂
i=1

{wl
−(i) ≤ w∗

−(t, i) ≤ wu
−(i)} ∩

j−1⋂
i=1

{τ(t, i) ≤ Cu(λ) · wu
−(i)} (133)

holds for some j ≤ n(λ, z), then

T
g

N(t)+j = T
g

N(t)+1 +
j−1∑
i=1

τ(t, i) ≤ T
g

N(t)+1 + Cu(λ)

j−1∑
i=1

wu
−(i)

which implies μu(s) ≤ μ(s) ≤ μl(s) for 0 ≤ s ≤ wu−(j) by (122) and Au(λ, z,1). From this
wl−(j) ≤ w∗−(t, j) ≤ wu−(j) follows, and (121) can be applied to deduce

τ(t, j) = w∗
−(t, j) + w∗

+(t, j) ≤
(

1 +
√

Esup(λ)

Einf (λ)

)
w∗

−(t, j) ≤ Cu(λ)wu
−(j).

Thus we can replace j with j + 1 in (133). This completes the proof of (132). Let

θu(t, i, x̂) := 2Esup(λ)wu(i) · I[2Esup(λ)wu(i) > x̂],
θ l(t, i, x̂) := 2Einf (λ)wl(i) · I[2Einf (λ)wl(i) > x̂].

(122) and (132) imply

Au(λ, z,1) ⊆
n(λ,z)⋂
i=1

{θ l(t, i, x̂) ≤ θ(t, i, x̂) ≤ θu(t, i, x̂)},

Bu(λ, z, ε) :=
{∑n(λ,z)

i=1 θu(t, i, x̂)

Eδ(λ)
≤ Rsb

(
1√
2
, x

)
+ ε

}
,

Bl(λ, z, ε) :=
{∑n(λ,z)

i=1 θ l(t, i, x̂)

Eδ(λ)
≥ Rsb

(
1√
2
, x

)
− ε

}
.
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The law of large numbers, (126) and (131) imply that

z < ε =⇒ lim
λ→∞ P (Bu(λ, z, ε)) = 1 and − ε < z =⇒ lim

λ→∞ P
(
Bl(λ, z, ε)

)= 1.

We can use (132) and (121) to show

Au(λ, z,1) ⊆
n(λ,z)⋂
i=1

{Cl(λ)wl
−(i) ≤ τ(t, i) ≤ Cu(λ)wu

−(i)}.

Since

m(λ) = max

{
j : T g

N(t)+1 +
j∑

i=1

τ(t, i) < t + δ(λ)

}

and Au(λ, z,0) ⊆ Au(λ, z,1) by definition,

Au(λ, z,0) ⊆ {m(λ) ≥ n(λ, z)}, Al(λ, z,0) ∩ Au(λ, z,1) ⊆ {m(λ) ≤ n(λ, z)},

Al

(
λ,

ε

2
,0

)
∩ Au

(
λ,

ε

2
,1

)
∩ Bu

(
λ,

ε

2
, ε

)
∩ Bl

(
λ,−ε

2
, ε

)
∩ Au

(
λ,−ε

2
,0

)
⊆ B(λ, ε).

This completes the proof of limλ→∞ P (B(λ, ε)) = 1. �
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